

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Document No. A13761EJ1V1UM00 (1st edition)
Date Published January 2002 NS CP(N)

Printed in Japan
1998©

Preliminary User’s Manual

V30MZ™
16-Bit Microprocessor Core

Hardware

2

[MEMO]

3

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

V30MZ, V30HL, V30MX, and V Series are trademarks of NEC Corporation.

4

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited
without governmental license, the need for which must be judged by the customer. The export or re-export of this product
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

• The information contained in this document is being issued in advance of the production cycle for the
 device. The parameters for the device may change before final production or NEC Corporation, at its own
 discretion, may withdraw the device prior to its production.
• Not all devices/types available in every country. Please check with local NEC representative for availability
 and additional information.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these circuits,
 software, and information in the design of the customer's equipment shall be done under the full responsibility
 of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
 parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
 the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
 property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
 measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 Standard: Computers, office equipment, communications equipment, test and measurement equipment,
 audio and visual equipment, home electronic appliances, machine tools, personal electronic
 equipment and industrial robots
 Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
 systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
 for life support)
 Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
 support systems or medical equipment for life support, etc.
 The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
 If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
 they should contact an NEC sales representative in advance.

M5D 98. 12

5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J01.12

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

• Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana S.R.L.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (France) S.A.
Vélizy-Villacoublay, France
Tel: 01-3067-58-00
Fax: 01-3067-58-99

NEC Electronics (France) S.A.
Representación en España
Madrid, Spain
Tel: 091-504-27-87
Fax: 091-504-28-60

6

[MEMO]

7

INTRODUCTION

Readers : This manual is intended for users who have an understanding of the V30MZ hardware

which is the CPU core of CBIC functions and wish to design an application system

using the V30MZ functions.

Purpose : This manual is intended for users to understand the V30MZ hardware functions

described in the Organization below.

Organization : This V30MZ User’s Manual mainly consists of the following chapters.

• General Description • Interrupt functions

• Pin functions • Standby functions

• CPU functions • Reset functions

• Bus control functions • Test functions

How to read this manual : This manual assumes that users have a general understanding of electric circuits,

logical circuits, and microcontrollers.

To understand the overall functions of the V30MZ functions

→ Read this manual in the order of the TABLE OF CONTENTS .

To find the differences between V30HL™ and V30MX™

→ Refer to Section 1.3 Differences between V30MZ and V30HL, V30MX.

To find the details of instruction functions

→ Refer to the separate volume of the 16-Bit V Series TM Instruction User’s Manual .

Conventions : Data significance : Higher digits on the left and lower digits on the right

Active low representation : xxxB (B after pin or signal name)

Note : Footnote for item marked with Note in the text

Caution : Information requiring particular attention

Remark : Supplementary information

Numerical representation : Binary … xxxx or xxxxB

Decimal … xxxx

Hexadecimal … xxxxH

Prefixes indicating power of 2 (address space, memory capacity) :

K (kilo) : 210 = 1024

M (mega) : 220 = 10242

G (giga) : 230 = 10243

8

Related documents : Note that the related documents may be preliminary versions, but there are not

indicated as such in this document.

• 16-Bit V Series Instruction User’s Manual (U11301E)

• CB-C9 Family VX/VM Type Design Manual User’s Manual (A12745E)

• CB-C9 Family VX/VM Type Core Library CPU Core User’s Manual (A13195E)

9

CONTENTS

CHAPTER 1 GENERAL DESCRIPTION 13
1.1 Features... 13

1.2 Symbol Diagram .. 13

1.3 Differences between V30MZ and V30HL, V30MX... 14

CHAPTER 2 PIN FUNCTIONS.. 17
2.1 Pin List ... 17

2.2 Pin Statuses... 18

2.3 Description of Pin Statuses.. 19

2.3.1 Normal pins... 19

2.3.2 Test Pins ... 22

2.3.3 Reserved pins ... 22

2.4 Handling of Unused Pins ... 23

CHAPTER 3 CPU FUNCTIONS.. 25
3.1 Register Configuration ... 25

3.1.1 General-purpose registers (AW, BW, CW, DW) ... 25

3.1.2 Segment registers (PS, SS, DS0, DS1) .. 25

3.1.3 Pointer (SP, BP).. 25

3.1.4 Program counter (PC)... 26

3.1.5 Program status word (PSW) ... 26

3.1.6 Index register (IX, IY) .. 30

3.2 Address Space .. 31

3.2.1 Memory space .. 31

3.2.2 I/O space... 32

3.3 Instruction Prefetch.. 33

3.4 Logical Address and Physical Address... 34

3.4.1 Segment system ... 34

3.4.2 Segment configuration .. 35

3.4.3 Dynamic relocation ... 37

3.5 Effective Address... 39

3.6 Instruction Set.. 40

3.6.1 List of instruction sets by function... 40

3.6.2 Format of object code ... 41

3.7 Addressing Mode... 42

3.7.1 Instruction address ... 42

3.7.2 Data address... 43

CHAPTER 4 BUS CONTROL FUNCTIONS.. 4 7
4.1 Interface between V30MZ and Memory... 47

4.1.1 Cautions on accessing word data... 48

4.2 Interface between V30MZ and I/O... 49

4.3 Read/Write Timing of Memory and I/O .. 50

4.3.1 Read timing of memory and I/O .. 50

4.3.2 Write timing of memory and I/O .. 52

4.4 Bus Hold Function ... 54

10

CHAPTER 5 INTERRUPT FUNCTIONS 55
5.1 Hardware Interrupt ...58

5.1.1 Non-maskable interrupt (NMI) ...58

5.1.2 Maskable interrupt (INT) ...58

5.2 Software Interrupts...60

5.3 Timing at which Interrupt is Not Acknowledged ...61

5.4 Interrupt Servicing in Execution of Block Processing Instruction62

CHAPTER 6 STANDBY FUNCTIONS 65
6.1 Setting of Standby Mode..65

6.2 Standby Mode..65

6.3 Release of Standby Mode..66

6.3.1 Release by hardware interrupt request ...66

6.3.2 Release by RESET input ..67

CHAPTER 7 RESET FUNCTIONS.. 69

CHAPTER 8 TEST FUNCTIONS... 71
8.1 Test Pins ..71

8.1.1 Test bus pins (TBI22 to TBI0, TBO42 to TBO0)..71

8.1.2 BUNRI, TEST pins ..71

8.2 Normal Mode..72

8.3 Unit Test Mode and Standby Test Mode..72

8.3.1 Unit test mode ...72

8.3.2 Standby test mode ..72

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS... 73

APPENDIX B INDEX 85

11

LIST OF FIGURES

Figure No. Title Page

3-1 Program Status Word (PSW)...27

3-2 Memory Map..31

3-3 Configuration of Word Data and Double Word Data..32

3-4 I/O Map..32

3-5 Conceptual Diagram of Segment System..34

3-6 Relationship between Segment Register, Offset Address and Physical Address35

3-7 Relationship between Each Segment Register, Segment and Memory Space.....................................36

3-8 Dynamic Relocation...38

3-9 Memory Address Calculation...39

3-10 Object Code Format ..41

4-1 Interface between V30MZ and Memory...47

4-2 Read Timing of Memory and I/O..50

4-3 Write Timing of Memory and I/O..52

4-4 Bus Hold Timing ..54

5-1 Interrupt Vector Table Configuration ...56

5-2 Interrupt Acknowledge Cycle...59

6-1 Timing to Enter Standby Mode ..65

12

LIST OF TABLES

Table No. Title Page

2-1 Relationship among Operand and UBEB, A0, and Bus Cycles .. 19

2-2 Relationship between BS3 to BS0 Signal and Bus Cycle... 20

3-1 Address and Data Configuration of Each Memory Element ... 31

3-2 Segment Registers and Offset Addressing... 36

3-3 List of Instruction Sets by Function... 40

4-1 V30MZ Data Access ... 48

5-1 Interrupt Source List ... 55

5-2 Number of Bus Cycles Required until Interrupt is Acknowledged... 62

7-1 Status of Output Pins after Reset ... 69

7-2 Initial Value of Registers after Reset .. 69

8-1 Test Mode Selection List .. 71

A-1 List of Number of Instruction Execution Clocks .. 74

13

CHAPTER 1 GENERAL DESCRIPTION

The V30MZ is a CPU core that is an improved version of the V30MX, which itself enhances the bus efficiency of

the µPD70116H (other name: V30HL), an original NEC microprocessor.

The V30MZ raises the bus efficiency by realizing 1 clock/bus cycle. The incorporation of an internal pipeline

considerably raises the instruction execution time, enabling fast processing comparable to that of RISC

microprocessors.

Compared to the V30MX's 4.3 MIPS (33-MHz operation, no wait), the V30MZ realizes a processing performance

of 35 MIPS (66-MHz operation, no wait).

1.1 Features

(1) Processing performance: 35 MIPS (66-MHz operation, no wait)

(2) CMOS static design (internal system clock can be fully stopped)

(3) 1 bus cycle: 1 clock

(4) External bus interface

• Address bus: 20 bits

• Data bus: 16 bits (separate input/output buses)

(5) Bus hold function

(6) Standby function (HALT mode)

1.2 Symbol Diagram

 UBEB
 BS (3:0)

 DO (15:0)

 DI (15:0)

 A (19:0)

 out
 HLDAK

 NMI
 INT

 CLK

TBO
(42:0)

TBI
(22:0) TEST BUNRI

 in in in out

 POLLB

 RESET

 BUSLOCKB
 out

 out
 out
 out

in
in

in
in
in

in
in

 READYBin out

 DBNMIM

DBMODE

 DBINT
 DBA20

 out

in
in

 out
DBRD
DBWR

 out
 out

DBHLTST

 TBRA

 out

 out
TINTA
TEOI

 out
 out

 TILEN (3:0) out

HLDRQ

CHAPTER 1 GENERAL DESCRIPTION

14

1.3 Differences between V30MZ and V30HL, V30MX
(1/3)

Item V30MZ V30HL V30MX

Address/data bus A19 to A0, DI15 to DI0, DO15 to DO0 A19 to A16,

AD15 to AD0

A23 to A0, D15

to D0

Large-scale mode/small-scale

mode

Not provided Provided Not provided

Pin functions Following pins of V30HL are removedNote:

ASTB, PS3 to PS0, BUFEN, QS1, QS0, BUFR/W, RD, IC, RQ/AK1,

RQ/AK0, INTAK, S/LG, LBS0, WR, NC

—

µPD8080AF emulation function Not provided Provided Not provided

Connection to numerical

operation co-processor

Not possible Possible

LIM EMS4.0 function Not provided Not provided Provided

Test function as CBIC core Provided (TBI22 to TBI0, TBO42 to TBO0, BUNRI,

TEST)

Not provided Provided

BUSLOCKB pin status in case

of BUSLOCK instruction

execution prior to HALT

instruction

High-level output Low-level output

Status of UBEB pin during

interrupt acknowledge cycle

High-level output Low-level output

Status of output pins during bus

hold

See section 2.2. Pin Statuses High impedance

Relationship between

BUSLOCK instruction and bus

hold request

Bus hold request is acknowledged even if BUSLOCK

instruction is executed immediately before an

instruction that does not perform access to memory

or I/O. The BUSLOCKB output remains high.

BUSLOCK instruction effective for

all instructions

Bus hold request acknowledged

between first and second bus

cycle when odd address word

data is accessed

Not possible Possible

Bus status output at recovery

from bus hold status to standby

mode

No (remains in idle status) Provided

Instruction execution time The number of instruction clocks for each instruction and the CPU operating frequency of

the V30MZ have been improved, so that the instruction execution time is considerably

reduced. Note that programs that depend on the number of instruction execution clocks,

such as consecutive I/O accesses, may not function normally.

Interrupt response time The V30MZ performs pipeline processing internally, executing multiple instruction in

parallel. Therefore, in cases such as when a hardware interrupt synchronized with a given

bus cycle is requested, the V30MZ may acknowledge the interrupt request after performing

a larger number of instructions than the V30HL and V30MX. However, this does not apply

with regard to I/O accesses

Undefined flag change If an arithmetic operation defined as an indefinite flag change is executed, the contents of

the flag immediately after the execution may differ from the V30HL and V30MX. This is

especially likely to occur in the case of multiply and divide instruction.

Interrupt request acknowledge

disable timing

The timing at which interrupt requests are not acknowledged differs. (Refer to Section 5.3

Timing at which Interrupt is Not Acknowledged .)

Note The BS3 pin of the V30MZ has the same functions as the IO/M pin of the V30HL, except for the output timing.

Remark Active low pins are indicated with xxx (overscore added) in the case of the V30HL, whereas they are

indicated with xxxB (B added) in the case of the V30MZ.

CHAPTER 1 GENERAL DESCRIPTION

15

(2/3)

Item V30MZ V30HL V30MX

Supported instructions The V30MZ does not support the following instructions supported by the V30HL and

V30MX. An undefined result is obtained by executing these instructions.

ADD4S, BRKEM, CALLN, CLR1Note 1, CMP4S, EXT, FPO2, INS, NOT1Note 2, REPC,

REPNC, RETEM, ROL4, ROR4, SET1Note 3, SUB4S, TEST1

Moreover, the FPO1 instruction is handled as an NOP instruction.

Number of instruction prefixes Up to 7 instruction prefixes can be used (for all

instructions). Even if instruction prefixes are used

redundantly, normal processing is performed as long

as their total number doesn't exceed 7.

If there are more than 7 prefixes for one instruction,

the execution result of the instruction (to which

prefixes have been attached) is not guaranteed.

Furthermore, normal recovery from interrupt

processing is not possible.

For repeat string instructions

(REP, MOVBK, etc.), 3 types of

prefixes MAX. can be used (REP

is also counted as 1 type). If there

are redundant instruction prefixes,

repeat string instructions cannot

be performed normally after the

end of interrupt processing. In the

case of instructions other than

string instructions, the number of

instruction prefixes is not limited.

Decimal correction instruction Performs a correction operation for the second byte of

CVTDB and DVTBD instructions.

Decimal correction operation is

performed regardless of the value

of the second byte of the CVTDB

and CVTBD instructions.

Multiple bit shift and

rotate instructions

Only the lower 5 bits of the number of shifts are valid. All 8 bits of the number of shifts

(immediate, or specification by CL

register) are valid.

PREPARE instruction Only the lower 5 bits of the second operand are valid. All 8 bits of the second operand

are valid.

POP R instruction Executes memory read cycle 8 times. However, data

corresponding to SP is not used.

Except for SP, 7 memory read

cycles are performed.

Repeat prefixed CMPBK,

CMPBKB, and CMPBKW

instructions

Memory read is performed in the order IX → IY Memory read is performed in the

order IY → IX.

CALL memptr32 instruction Reads new PC, PS values after saving current PC,

PS values to the stack.

Current PC and PS values are

saved on to the stack after the

new PC and PS values are read.

When number of shifts = 0 for

shift, and rotate instructions

Executes also write cycle of memory operand. Z flag,

P flag, and S flag change for SHL, SHR, and SARA

instructions. These flags are set/cleared depending

on the execution result of shift instruction.

If the operand is memory, only the

read cycle is performed, and the

write cycle of the shift result is not

performed. For the SHL, SHR, and

SARA instructions, the Z flag, P

flag, and S flag do not change.

These flags retain the status prior

to instruction execution.

Notes 1. Excluding CLR1 CY and CLR1 DIR.

2. Excluding NOT1 CY.

3. Excluding SET1 CY and SET1 DIR.

CHAPTER 1 GENERAL DESCRIPTION

16

(3/3)

Item V30MZ V30HL V30MX

BUSLOCK instruction Only valid for instruction performing memory or I/O

access, and not valid for other instructions. Moreover,

during bus lock period, code fetch bus cycle is not

performed.

Effective for all instructions.

During execution of the

instructions following the

BUSLOCK instruction, the

BUSLOCK output is low level, and

during this period, bus hold

requests are not accepted.

Moreover, during the bus lock

period, a code fetch bus cycle

may be performed.

17

CHAPTER 2 PIN FUNCTIONS

2.1 Pin List

Pin Input/Output Function

A19 to A0 Output Address signal output

DI15 to DI0 Input Data signal input

DO15 to DO0 Output Data signal output

UBEB Output Data bus upper byte enable signal output

BS3 to BS0 Output Bus status signal output

READYB Input Wait state generation signal input

BUSLOCKB Output Bus lock signal output

POLLB Input External system period sense signal input

RESET Input System reset signal input

HLDRQ Input Bus hold request signal input

HLDAK Output Bus hold acknowledge signal output

NMI Input Non-maskable interrupt request signal input

INT Input Maskable interrupt request signal input

CLK Input System clock input

BUNRI Input Pin for performing test using test bus

TEST Input

TBI22 to TBI0 Input

TBO42 to TBO0 Output

DBINT Input Reserved for NEC

DBMODE Output

DBA20 Output

DBRD Output

DBWR Output

DBNMIM Input

DBHLTST Output

TEOI Output

TILEN3 to TILEN0 Output

TBRA Output

TINTA Output

CHAPTER 2 PIN FUNCTIONS

18

2.2 Pin Statuses

The status of each output pin in the different operation modes is listed in the table below.

Pin Status

Normal Mode Test Mode

Pin

Bus Hold Standby (HALT)

mode

Reset Standby test mode Unit test mode

A19 to A0 H H H Undefined Undefined

DO15 to DO0 Undefined Undefined Undefined Undefined Undefined

UBEB H H H Undefined Undefined

BS3 to BS0 H H H Undefined Undefined

BUSLOCKB H H H Undefined Undefined

HLDAK H L L Undefined Undefined

TBO42 to TBO0 Hi-Z Hi-Z Hi-Z Hi-Z Operating

Remark H : High-level output

L : Low-level output

Hi-Z : High impedance

Operating : Outputs valid signal

CHAPTER 2 PIN FUNCTIONS

19

2.3 Description of Pin Statuses

2.3.1 Normal pins

(1) A19 to A0 (Address)...Output

Bus for outputting 20-bit address.

None of the pins ever go into high impedance.

(2) DI15 to DI0 (Data input)...Input

Dedicated input bus for inputting 16-bit data.

Always input high-level or low-level signal (do not make signal high impedance).

(3) DO15 to DO0 (Data output)...Output

Dedicated output bus for outputting 16-bit data.

None of the pins ever go into high impedance.

(4) UBEB (Upper byte enable)...Output

Outputs low-active signal indicating that higher 8 bits of 16-bit data bus are to be used with memory or I/O

access cycle. This pin does not go into high impedance.

The bus cycles for which this signal becomes active are as follows.

• Bus cycle through byte access of odd address

• Bus cycle through first byte access of odd address for word data

• Bus cycle through access of even address for word data

Combined with the A0 signal, the bus cycle can be identified as follows.

Table 2-1. Relationship among Operand and UBEB, A0, and Bus Cycles

Operand UBEB pin output level A0 pin output level Number of bus cycles

Even address word L L 1

1st bus cycle L H 2Odd address word

2nd bus cycle H L

Even address byte H L 1

Odd address byte L H 1

Remark L: Low level

H: High level

(5) BS3 to BS0 (Bus status)...Output

Outputs status signal to external to notify state of the bus cycle. During reset and bus hold acknowledge, go into

idle state (high-level output).

CHAPTER 2 PIN FUNCTIONS

20

This pin does not go into high-impedance.

The BS3 pin has the same functions as the IO/M pin of the V30HL, except for output timing (only names differ).

Table 2-2. Relationship between BS3 to BS0 Signal and Bus Cycle

Pin Output Level

BS3 BS2 BS1 BS0

Bus Cycle (Status)

L L L L Interrupt acknowledge

L H L H I/O read

L H H L I/O write

H L L L Standby (HALT) mode

H L L H Memory data read

H L H L Memory data write

H H L H Code fetch

H H H H Idle status

Remarks 1. L: Low level

H: High level

2. No output with combinations other than above.

(6) READYB (Ready)...Input

Performs wait control.

When memory or I/O data read/write operation cannot be completed within the basic bus cycle (1 clock), the bus

cycle can be extended by inputting an inactive level (high level) to this pin.

(7) BUSLOCKB (Bus lock)...Output

It outputs a low-active signal to other bus masters requesting that they do not use the system bus during

execution of 1 instruction following the BUSLOCK instruction. It also outputs the signal during interrupt

acknowledge.

It does not go into high impedance.

(8) POLLB (Poll)...Input

It is used to synchronize between program execution by the V30MZ and operation of an external device. Input to

this pin are checked by the POLL instruction: if a low level is input, the next instruction is processed; if a high

level is input, program execution is halted until this pin is driven low.

Input of a low level to this pin should be done for at least 9 clocks.

(9) RESET (Reset)...Input

Inputs a reset signal. Following reset release, the V30MZ starts program execution from memory address

FFFF0H (segment value: FFFFH, offset value: 0000H).

(10)HLDRQ (Hold request)...Input

Inputs a signal to the V30MZ to request that the external bus master release the address bus, data bus, and

control bus (bus hold).

Inputting a high level to this pin causes the bus hold acknowledge status to be entered upon completion of the

currently executing bus cycle, and while the high level is input, the bus hold acknowledge status continues.

Input a high level for at least 3 clock cycles.

CHAPTER 2 PIN FUNCTIONS

21

(11)HLDAK (Hold acknowledge)...Output

Outputs a signal indicating that the HLDRQ signal has been acknowledged and that the bus hold acknowledge

status is entered.

(12)NMI (Non-maskable interrupt)...Input

Inputs a non-maskable interrupt signal by software.

The NMI signal is active at the rising edge and detected in any clock cycle, however, it starts interrupt servicing

after the end of the instruction being executed.

The interrupt start address for this interrupt is determined by interrupt vector 2.

Input an active level (high level) for at least 5 cycles after a rising edge.

When inputting NMI requests consecutively, keep NMI low for at least one clock cycle.

The priority order of interrupt request signals is as follows.

INT < NMI < HLDRQ

Remark The standby mode can also be released by an NMI signal.

(13) INT (Interrupt request)...Input

Inputs an interrupt request signal that can be masked by software.

Input an active level (high level) to this until the interrupt acknowledge status is output from the BS3-BS0 pins.

(14)CLK (Clock)...Input

Inputs a clock signal. Input to this CLK pin and internal operation of the V30MZ are performed at the same

frequency.

When the CLK input is stopped, the supply current enters 0A.

CHAPTER 2 PIN FUNCTIONS

22

2.3.2 Test Pins

(1) TBI22 to TBI0 (Test bus input)...Input

Input test bus pin.

(2) TBO42 to TBO0 (Test bus output)...Output

Output test bus pin.

(3) TEST (Test bus control)...Input

Test bus control input pin.

(4) BUNRI (Test bus control)...Input

Input pin for selecting normal mode/test mode.

Remark For details on the functions of each pin, see CHAPTER 8 TEST FUNCTIONS.

2.3.3 Reserved pins

The following each pin is reserved for NEC.

According to Section 2.4 Handling of Unused Pins , connect each pin.

• DBINT

• DBMODE

• DBA20

• DBRD

• DBWR

• DBNMIM

• DBHLTST

• TEOI

• TILEN3 to TILEN0

• TBRA

• TINTA

CHAPTER 2 PIN FUNCTIONS

23

2.4 Handling of Unused Pins

Pin Input/Output Recommended Handling

A19 to A0 Output Leave open.

DO15 to DO0 Output

UBEB Output

BS3 to BS0 Output

READYB Input Input low level.

BUSLOCKB Output Leave open.

POLLB Input Input low level.

HLDRQ Input

HLDAK Output Leave open.

NMI Input Input low level.

INT Input

DBINT Input

DBMODE Output Leave open.

DBA20 Output

DBRD Output

DBWR Output

DBNMIM Input Input low level.

DBHLTST Output Leave open.

TEOI Output

TILEN3 to TILEN0 Output

TBRA Output

TINTA Output

24

[MEMO]

25

CHAPTER 3 CPU FUNCTIONS

3.1 Register Configuration

3.1.1 General-purpose registers (AW, BW, CW, DW)

There are four 16-bit registers. These can be not only used as 16-bit registers, but also accessed as 8-bit

registers (AH, AL, BH, BL, CH, CL, DH, DL) by dividing each register into the higher 8 bits and the lower 8 bits.

Therefore, these registers are used as 8-bit registers or 16-bit registers for a wide range of instructions such as

transfer instruction, arithmetic operation instruction, logical operation instruction.

Furthermore, the following registers are used as the default registers for specific instruction processing.

• AW : Word multiplication/division, word input/output, data conversion

• AL : Byte multiplication/division, byte input/output, BCD rotate, data conversion

• AH : Byte multiplication/division

• BW : Data conversion (table reference)

• CW : Loop control branch, repeat, and prefix

• CL : Shift instruction, rotation instruction

• DW : Word multiplication/division, indirect addressing input/output

3.1.2 Segment registers (PS, SS, DS0, DS1)

The V30MZ can divide the memory space into logical segments in 64 K-byte units and control up to 4 segments

simultaneously (segment system). The start address of each segment is specified by the following 4 segment

registers.

• Program segment register (PS) : Specifies the base address of the segment that stores instructions.

• Stack segment register (SS) : Specifies the base address of the segment that performs stack operations.

• Data segment 0 register (DS0) : Specifies the base address of the segment that stores data.

• Data segment 1 register (DS1) : Specifies the base address of the segment that is used as a data destination

by data transfer instructions.

For details of the segment system and segment registers, refer to Section 3.4 Logical Address and Physical

Address .

3.1.3 Pointer (SP, BP)

The pointer consists of two 16-bit registers (stack pointer (SP) and base pointer (BP)).

Each register is used as a pointer to specify a memory address and can be referenced in an instruction and is also

used as an index register during a memory data reference.

The SP indicates the address in the stack segment at which the latest data is stored and is used as the default

register during stack operation.

The BP is used to fetch the data stored on the stack.

CHAPTER 3 CPU FUNCTIONS

26

3.1.4 Program counter (PC)

The PC is a 16-bit binary counter that holds the offset information of the memory address of the program that the

execution unit (EXU) is about to execute.

The PC value is automatically incremented (+1) every time the microprogram fetches an instruction code from an

instruction queue.

Furthermore, in execution of a branch instruction with branch or condition, subroutine control instruction, and

interrupt instruction, a new location is loaded and the PC value becomes the same as that of the prefetch pointer

(PFP).

3.1.5 Program status word (PSW)

The PSW consists of 6 kinds of status flag and 4 kinds of control flag.

(1) Status flag

• Overflow flag (V)

• Sign flag (S)

• Zero flag (Z)

• Auxiliary carry flag (AC)

• Parity flag (P)

• Carry flag (CY)

(2) Control flag

• Mode flag (MD)

• Direction flag (DIR)

• Interrupt enable flag (IE)

• Break flag (BRK)

The status flag is automatically set (1) and cleared (0) according to the execution result (data value) of each

instruction. The CY flag can directly be set/ cleared or inverted by an instruction.

The control flag is set/cleared by an instruction and controls the operation of the V30MZ. The IE flag and BRK flag

are cleared (0) when interrupt servicing is started.

RESET input clears (0) all flags (except MD flag).

The PSW is manipulated in byte units or word units by the processing shown below. Processing in byte units is

only carried out on the lower 8 bits (including the status flags except the V flag).

CHAPTER 3 CPU FUNCTIONS

27

Figure 3-1. Program Status Word (PSW)

MD 1 V IE S 0 0 11 1 DIR BRK Z AC P CY

15 13 11 9 7 5 3 114 12 10 8 6 4 2 0

Bits 7 to 0 can be stored or restored in AH by a MOV instruction.

All bits of the PSW are saved to the stack when an interrupt is generated or in execution of a call instruction

(CALL) and restored by a return instruction (RET, RETI).

The PSW can be saved or restored to the stack independently by a PUSH PSW instruction or POP PSW

instruction.

The flags are set to the states shown below after execution of each instruction.

(a) Carry flag (CY)

<1> Binary addition/subtraction

In the case of processing in byte units, CY is set when there is a carry or borrow from operation result

bit 7, and cleared otherwise.

In the case of word operation, CY is set when there is a carry or borrow from operation result bit 15,

and cleared otherwise.

It is not changed by an increment or decrement instruction.

<2> Logical operation

CY is cleared without regard to the operation result.

<3> Binary multiplication

CY is cleared if AH is other than 0 as a result of an unsigned byte operation.

CY is cleared if AH is AL sign extension as a result of a signed byte operation and set otherwise.

CY is cleared if DW is 0 as a result of an unsigned word operation and set otherwise.

CY is cleared if DW is AW sign extension as a result of an unsigned word operation and set otherwise.

In the case of an 8-bit immediate operation, CY is cleared when the product is within 16 bits and set

otherwise.

<4> Binary division

Undefined.

<5> Shift/rotate

In the case of a shift or rotate including the CY flag, CY is set when the bit shifted to the CY flag is 1

and cleared if 0.

(b) Parity flag (P)

<1> Binary addition/subtraction, logical operation, shift

Set when the number of “1” bits of the lower 8 bits of the operation result is even and cleared when it

is odd.

Set when the result is all 0.

CHAPTER 3 CPU FUNCTIONS

28

<2> Binary multiplication/subtraction

Undefined.

(c) Auxiliary carry flag (AC)

<1> Binary addition/subtraction

In the case of processing in byte units, it is set when there is a carry from the lower 4 bits to the higher

4 bits or a borrow from the higher 4 bits to the lower 4 bits, and cleared otherwise.

In a word operation, it performs the same operation as for a byte operation with respect to the lower

bytes.

<2> Logical operation, binary multiplication/division, shift/rotate

Undefined.

(d) Zero flag (Z)

<1> Binary addition/subtraction, logical operation, shift/rotate

It is set when the 8 bits and 16 bits of the result are all 0 for a byte operation and word operation,

respectively, and cleared otherwise.

<2> Binary multiplication/division

Undefined.

(e) Sign flag (S)

<1> Binary addition/subtraction, logical operation, shift/rotate

Set when bit 7 of the result is 1 and cleared when it is 0 in the case of a byte operation.

Set when bit 15 of the result is 1 and cleared when it is 0 in the case of a word operation.

<2> Binary multiplication/division

Undefined.

(f) Overflow flag (V)

<1> Binary addition/subtraction

Set when carries from bit 7 and bit 6 are different and cleared when they are the same in the case of a

byte operation.

Set when carries from bit 15 and bit 14 are different and cleared when they are the same in the case

of a word operation.

<2> Binary multiplication

As a result of an unsigned byte operation, cleared if AH is 0 and set otherwise.

As a result of a signed byte operation, cleared if AH is sign extension of AL and set otherwise.

As a result of an unsigned word operation, cleared if DW is 0 and set otherwise.

As a result of a signed word operation, cleared if DW is sign extension of AW and set otherwise.

In the case of an 8-bit immediate operation, cleared if the product is within 16 bits and set if the

product exceeds 16 bits.

CHAPTER 3 CPU FUNCTIONS

29

<3> Binary division

Cleared.

<4> Logical operation

Cleared.

< 5 > Shift/rotate

In the case of a left 1-bit shift/rotate, the status of the overflow flag is as follows depending on the

operation result.

• When CY = MSB: Cleared

• When CY ≠ MSB: Set

In the case of a right 1-bit shift/rotate, its status is as follows depending on the operation result.

• When MSB = next lower bit of MSB: Cleared

• When MSB ≠ next lower bit of MSB: Set

In the case of a multi-bit shift/rotate, it is undefined.

(g) Break flag (BRK)

Only when it is saved to the stack as part of the PSW, it can be set by a memory manipulation instruction,

and becomes valid when restored to the PSW after it is set.

If the BRK flag is set, executing one instruction automatically generates a software interrupt (interrupt vector

1) allowing tracing of one instruction at a time.

(h) Interrupt enable flag (IE)

IE is set by an EI instruction and the maskable interrupt (INT) is enabled. It is cleared by a DI instruction

and the maskable interrupt (INT) is disabled.

(i) Direction flag (DIR)

When the DIR flag is set, processing is carried out from the higher addresses to the lower addresses in

block transfer and/or I/O system instructions. When it is cleared, processing is carried out from the lower

addresses to the higher addresses.

(j) Mode flag (MD)

This is a µPD8080AF emulation function related flag that conforms to the previous V30HL. Since the

V30MZ is not provided with the emulation function, this flag is invalid.

CHAPTER 3 CPU FUNCTIONS

30

3.1.6 Index register (IX, IY)

This consists of two 16-bit registers (IX, IY). In a memory data reference, it is used as an index register to

generate effective addresses (each register can also be referenced in an instruction).

Furthermore, in specific instruction processing, it has the following special roles.

IX: Address register for source operand in block data manipulation instruction

Address register for source operand in BCD string operation instruction

IY: Address register for destination operand in block data manipulation

Address register for destination operand in BCD string operation instruction

CHAPTER 3 CPU FUNCTIONS

31

3.2 Address Space

3.2.1 Memory space

The V30MZ uses 20-bit address information and can access 1 M bytes (512 K words) of memory.

Figure 3-2 shows the memory map. The 1 K byte from 00000H to 003FFH is allocated to the interrupt vector

table. However, the table area that is not used by the system can be used for other purposes.

The start address after a reset is FFFF0H. The 12 bytes from FFFF0H to FFFFBH are automatically used for a

reset start, etc., and cannot be used for other purposes. The 4 bytes from FFFFCH to FFFFFH are also reserved for

future use and are not available for users.

Figure 3-2. Memory Map

Reserved area
FFFFFH

FFFFCH

FFFFBH

FFFF0H

Area for general use

FFFEFH

00400H

Interrupt vector table
003FFH

00000H

Refer to Figure 5-1. Interrupt
Vector Table Configuration

Dedicated area

The elements stored in the memory area include operation codes, interrupt start addresses, stack data, general

variables, and consist of two kinds; byte units and word units.

Addresses generated by an instruction for these elements can be even (A0 = 0) or odd (A0 = 1). Word data in the

V30MZ is designed to be accessible for both even and odd addresses. Both even and odd addresses are possible

for generation of an instruction. For the access method, refer to Section 4.1 Interface between V30MZ and

Memory .

Table 3-1 shows the address and data configuration of each memory element.

Table 3-1. Address and Data Configuration of Each Memory Element

Memory Element Address Data Configuration

Operation code Even/odd 1 to 6 bytes

Interrupt vector table Even 2 words/vector

Stack Even/odd Word

General variable Even/odd Byte/word/double word

CHAPTER 3 CPU FUNCTIONS

32

The word data configuration and double word data configuration are as follows.

Figure 3-3. Configuration of Word Data and Double Word Data

(a) Word data configuration (b) Double word data configuration

Higher byte

Lower byte

Higher address

Lower address

Higher byte

Lower byte

Higher address

Lower address

Higher byte

Lower byte

Higher word

Lower word

3.2.2 I/O space

The V30MZ can access an I/O space of up to 64 K bytes (32 K words) in an area independent of the memory

space.

The I/O space is addressed by I/O address information output from the lower 16 bits of the address bus. Figure 3-

4 shows the I/O map. The 256 bytes of FF00H to FFFFH are reserved for future use and are not available for users.

For the access method, refer to Section 4.2 Interface between V30MZ and I/O .

Figure 3-4. I/O Map

Reserved
FFFFH

FF00H

FEFFH

0000H

CHAPTER 3 CPU FUNCTIONS

33

3.3 Instruction Prefetch

The V30MZ performs pipeline processing internally, performing instruction fetch (prefetch), instruction decode, and

instruction execution in parallel. For this reason, it is difficult to determine what part of the program is currently being

executed by monitoring the output of the address bus for the instruction code fetch.

If there are conditional branch instructions, even in case branching does not occur, the address of the branch

destination is prefetched (only one time), so that further monitoring of the program is difficult.

The V30MZ has 8 prefetch queues (16 bytes).

CHAPTER 3 CPU FUNCTIONS

34

3.4 Logical Address and Physical Address

There are two kinds of memory space address; logical address and physical address.

The physical address means an address that directly corresponds to hardware. The V30MZ can access a 1 M-

byte memory space and so the range of a physical address value is 00000H to FFFFFH. A physical address is

generated every time the bus control unit (BCU) is started which fetches an instruction and transfers data, etc.

The logical address means an address used for addressing in the segment system.

3.4.1 Segment system

The segment means an address space in small units (MAX. 64 K bytes) which do not directly depend on program

creation.

Each segment consists of continuous memory and can be specified individually.

Physical addresses cannot be controlled directly in program creation in machine language. The V30MZ specifies

memory addresses in a segment system.

Addressing in the segment system uses the following two types of address.

• Segment base address : Start address of segment (address in 1 M-byte memory space)

• Offset address : Address allocated to each segment

In the segment system, the segment base address is fixed as a reference point and only the offset address is

treated as an address in processing within each segment.

Figure 3-5. Conceptual Diagram of Segment System

FFFFFH

00000H

xxxxxH

Segment

FFFFH

0000H

(maximum)

Offset
address

Segment base address

Memory space

The segment base address is specified by the segment register.

The physical address is a sum of the segment base address and offset address. Figure 3-6 shows the

relationship between the segment register and offset address, and physical address.

CHAPTER 3 CPU FUNCTIONS

35

Figure 3-6. Relationship between Segment Register, Offset Address and Physical Address

0 0Segment register (16 bits) 0

3 14 2 019

0

015

Offset address (16 bits)

019

Physical address (20 bits)

+

As shown in Figure 3-6, the physical address is a sum of 16 times the segment register content (4 bits shifted to

left) and offset value. At this time, the segment register content and offset value are treated as unsigned data.

In a program which is created as a set of multiple segments for which allocation addresses are specified by

physical addresses, each segment is compiled and assembled individually and becomes one or a number of object

modules. Each object module has a segment name, size, content classification, control information, etc., and

becomes a parameter in execution of link processing.

Multiple object modules are linked and the segment base addresses corresponding the physical addresses are

specified and become ready to be loaded to actual memory.

3.4.2 Segment configuration

The V30MZ can distinguish 4 kinds of segment (program, stack, data 0, data 1) and define them. For each

segment the start address is specified by one of the following 4 segment registers.

The BCU uses different segment registers for generation of physical addresses depending on the type of memory

bus cycle.

• Program segment register (PS)

• Stack segment register (SS)

• Data segment 0 register (DS0)

• Data segment 1 register (DS1)

The offset address within each segment is specified by a specific register or effective address. Table 3-2 shows

correspondence between each segment register and offset addressing.

CHAPTER 3 CPU FUNCTIONS

36

Table 3-2. Segment Registers and Offset Addressing

Segment Register

Offset
Default Override

PFP PS Disabled

SP SS Disabled

Effective address (BP base) PS, DS0, DS1

Effective address (non-BP base) DS0 PS, SS, DS1

IX in instruction group A (Primitive block transfer instruction,

primitive output instruction, BCD string instruction)

IY in instruction group B (Primitive block transfer instruction,

primitive input instruction, BCD string instruction)

DS1 Disabled

When the default offset is a prefetch pointer (PFP), stack pointer (SP) and index register (IY) in instruction group

B, the segment registers that can be combined are fixed at PS, SS, and DS1 respectively, and other segment

registers cannot be used.

For other default offsets, any segment registers other than the default segment register can be specified by the

segment override prefix.

Figure 3-7 shows the relationship between each segment register, segment and memory space.

Figure 3-7. Relationship between Each Segment Register, Segment and Memory Space

FFFFFH

00000H

Memory space

Program segment

FFFFH

0000H

Stack segment

FFFFH

0000H

Data segment 0

FFFFH

0000H

Data segment 1

FFFFH

0000H

PS

SS

DS0

DS1

V30MZ

Each segment has the following meaning.

CHAPTER 3 CPU FUNCTIONS

37

(1) Program segment

The start address of this segment is determined by the program segment register (PS) and the offset from the

start address is specified by the prefetch pointer (PFP).

In this segment, an operation code, table data, etc., are placed.

By using the segment override prefix (PS:), the program segment can be used as the general variable area and

source data area in execution of instruction group A.

(2) Stack segment

The start address of this segment is determined by the stack segment register (SS) and the offset from the start

address is specified by the effective address when the stack pointer (SP) and base pointer (BP) as the base

address are used.

This is used as an area to save the contents of the return address (PS, PC content), program status word (PSW),

general register, etc., as a parameter transfer area and local variable area.

By using the segment override prefix (SS:), the stack segment can be used as a general variable area and

source data area in execution of instruction group A.

(3) Data segment 0

The start address of this segment is determined by the data segment 0 register (DS0) and the offset from the

start address is specified by the effective address when BP is not used as a base address.

This segment is used as an area to store general variables.

When executing instruction group A, it is used as a source data area. However, in this case, the content of the

index register (IX) becomes the offset.

For the effective address when BP is used as the base address, the stack segment is used as the default, but

data segment 0 can be used if the segment override prefix (DS0:) is used.

(4) Data segment 1

The start address of this segment is determined by the data segment 1 register (DS1). This can be used as a

destination data area when executing instruction group B. In this case, the content of the index register (IY)

becomes the offset.

If the segment override prefix (DS1:) is used, data segment 1 can be used as a general variable area or source

data area in execution of instruction group A.

3.4.3 Dynamic relocation

Relocating programs that are stored in two or more files separately in empty memory spaces for each execution is

called dynamic relocation.

Figure 3-8 shows a conceptual diagram of dynamic relocation.

For the V30MZ, memory addressing of a program can be determined only with the offset value for the base

address of each segment (specified by each segment register). Therefore, it is possible to allocate the program in an

arbitrary memory space by only adjusting to the physical address of the memory at which it is to be allocated

(however, this is only possible if the base address of each segment is not changed in the program). This increases

the degree of freedom of program allocation in the memory (addressing is possible in 16-byte units), enabling more

effective utilization of memory and making it easier to implement a system that executes multiple jobs and tasks.

This can be applied to executing a program in a file on an external storage medium such as a floppy disk and hard

disk with the OS controlling the memory allocation area, type, and segment registers, and loading the program in any

empty memory area.

CHAPTER 3 CPU FUNCTIONS

38

Figure 3-8. Dynamic Relocation

(a) Before relocation (b) After relocation

FFFFFH

00000H

Memory space

Program segment

Stack segment

Data segment 0

Data segment 1

PS

SS

DS0

DS1

V30MZ

FFFFFH

00000H

Memory space

Program segment

Stack segment

Data segment 0

Data segment 1

PS

SS

DS0

DS1

V30MZ

CHAPTER 3 CPU FUNCTIONS

39

3.5 Effective Address

The effective address (EA) is an unsigned 16-bit number and is the memory address to be processed by an

instruction represented by the offset value for the base address of the corresponding segment. This is calculated by

the execution unit (EXU) according to the specification of an instruction operand.

The EXU calculates EA in several different methods (addressing mode). The method is selected by the 2nd byte

operand of the instruction. The information encoded in the 2nd byte of the instruction indicates how the effective

address of the memory indicated by the operand is calculated by the EXU. This operand code is automatically

generated by a compiler or assembler from a program statement or instruction description. All addressing modes are

available in assembly language (Refer to Section 3.7 Addressing Mode).

The method of calculation of EA is shown below. Figure 3-9 indicates that the EXU calculates EA by adding the

displacement, base register contents, and index register contents. For any instruction, these three elements can be

combined arbitrarily. The displacement is an 8-bit or 16-bit immediate number indicated by an operand.

Figure 3-9. Memory Address Calculation

0 00 0PS

or

0 00 0SS

0 00 0DS0

or

0 00 0DS1

or

Displacement (16 bits)

IY

or

IX

or

BP

or

BW

Physical address (20 bits)

BP

or

BW

IY

or

IX

Effective address

Encoded
in
instruction

Determined
by
instruction

Uniformity
determined
unless it is
denied by
segment
override
prefix

CHAPTER 3 CPU FUNCTIONS

40

3.6 Instruction Set

3.6.1 List of instruction sets by function

The V30MZ instruction sets by function are generally classified as follows:

Table 3-3. List of Instruction Sets by Function

Instruction Group Mnemonic

Data transfer instruction LDEA, MOV, TRANS, TRANSB, XCH

Repeat prefix REP, REPE, REPNE, REPNZ, REPZ

Primitive block transfer instruction CMPBK, CMPBKB, CMPBKW, CMPM, CMPMB, CMPMW, LDM, LDMB, LDMW,

MOVBK, MOVBKB, MOVBKW, STM, STMB, STMW

Input/output instruction IN, OUT

Primitive input/output instruction INM, OUTM

Addition/subtraction instruction ADD, ADDC, SUB, SUBC

Increment/decrement instruction DEC, INC

Multiplication instruction MUL, MULU

Division instruction DIV, DIVU

BCD adjustment instruction ADJ4A, ADJ4S, ADJBA, ADJBS

Data conversion instruction CVTBD, CVTBW, CVTDB, CVTWL

Comparison instruction CMP

Complement operation instruction NEG, NOT

Logical operation instruction AND, OR, TEST, XOR

Bit manipulation instruction CLR1 CY,CLR1 DIR, SET1 CY, SET1 DIR, NOT1 CY

Shift instruction SHL, SHR, SHRA

Rotate instruction ROL, ROLC, ROR, RORC

Subroutine control instruction CALL, RET

Stack manipulation instruction DISPOSE, POP, PREPARE, PUSH

Branch instruction BR

Conditional branch instruction BC, BCWZ, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV,

BNZ, BP, BPE, BPO, BZ, BV, DBNZ, DBNZE, DBNZNE

Interrupt instruction BRK, BRKV, CHKIND, RETI

CPU control instruction BUSLOCK, DI, EI, FPO1Note, HALT, NOP, POLL

Segment override prefix DS0:, DS1:, PS:, SS:

Note Treated as a NOP instruction.

Remarks 1. The following instructions are not supported among the instructions that V30HL supports. Executing

these instructions causes undefined.

ADD4S, BRKEM, CALLN, CLR1 (except CLR1 CY, CLR1 DIR), CMP4S, EXT, FPO2, INS, NOT1

(except NOT1 CY), REPC, REPNC, RETEM, ROL4, ROR4, SET1 (except SET1 CY, SET1 DIR),

SUB4S, TEST1

2. For details of each instruction, refer to the 16-Bit V Series Instruction User’s Manual .

CHAPTER 3 CPU FUNCTIONS

41

3.6.2 Format of object code

Object codes are basically indicated by the following format.

Figure 3-10. Object Code Format

Op-code Operand

Remark Op-code : 8-bit code indicating type of instruction

Operand : Field indicating register, memory address to be processed by instruction. Indicated by

field of 0 to 5 bytes

CHAPTER 3 CPU FUNCTIONS

42

3.7 Addressing Mode

3.7.1 Instruction address

The instruction address refers to the address at which an operation code is read and, normally it is automatically

incremented every time an operation code is read. However, in an instruction that controls the instruction execution

sequence such as a jump instruction, subroutine call instruction, the branch destination instruction address is

specified by an operand.

(1) Direct addressing

The 4-byte data in an operation code becomes an instruction address and is loaded into the PS and PC

registers. This mode is used by the following instructions.

CALL far_proc

BR far_label

(2) PC relative addressing

The 1-byte or 2-byte data in an operation code becomes a displacement from the start address (PC value) of the

next instruction and is added to the PC.

This mode is used by the following instructions.

CALL near_proc

BR near_label

BR short_label

Bcondition short_label ; Example BZ short_label

BNC short_label

(3) Register indirect addressing

The content of any 16-bit register specified by the register specification field in an operation code becomes the

instruction address and is loaded into the PC.

This mode is used by the following instructions.

CALL regptr16 ; Example CALL AW

BR regptr16 ; Example BR IX

(4) Memory indirect addressing

The 2-byte or 4-byte data in memory specified by the memory addressing (refer to Section 3.7.2 Data address)

indicated by the addressing mode specification field in an operation code becomes the instruction address and is

directly loaded into the PC or both PS and PC.

This mode is used by the following instructions.

CALL memptr16 ; Example CALL word_var [BW]

CALL memptr32 ; Example CALL dword_var [BW+IX]

BR memptr16 ; Example BR word_var [BR+2]

BR memptr32 ; Example BR dword_var [BP+IY]

CHAPTER 3 CPU FUNCTIONS

43

3.7.2 Data address

The data address is an address for reading/writing the operand data of each instruction. Normally, an address is a

concept used for memory or I/O, but this operand address includes data in registers, immediate data and I/O data.

(1) Non-memory addressing

Non-memory addressing specifies data in registers, immediate data and I/O data.

(a) Register addressing

Specifies the register from/to which the register specification field in an operation code reads/writes the

operand data.

The register addressing is shown in the following description.

General Description Register that can be Described

reg, reg' AW, BW, CW, DW, SP, BP, IX, IY, AL, AH, BL, BH, CL, CH, DL, DH

reg8, reg8' AL, AH, BL, BH, CL, CH, DL, DH

reg16, reg16' AW, BW, CW, DW, SP, BP, IX, IY

sreg PS, SS, DS0, DS1

acc AW, AL

Example of usage:

reg16 : MOV AW, IX ; AW ← IX

reg8 : ADD AL, CH ; AL ← AL + CH

(b) Immediate addressing

1-byte or 2-byte data in an operation code becomes read-only operand data. Immediate addressing cannot

be used for the destination operand of an instruction.

Immediate addressing is shown in the following description.

General Description Value that can be Described

imm8 0 to FFH (0 to 255 or −128 to +127)

imm16 0 to FFFFH (0 to 65535 or −32768 to +32767)

imm 0 to FFFFH (0 to 65535 or −32768 to +32767)

pop_value 0 to FFFFH (0 to 65535) … normally even

Example of usage:

imm16 : MOV AW, 216 ; AW ← 216

imm8 : SHL AL, 5 ; Shifts AL to left by 5 bits.

pop_value : RET 16 ; Deletes unnecessary 16 bytes on stack.

(c) I/O addressing

I/O addressing specifies data in a 64-K byte I/O space.

There are two kinds of specification method in I/O addressing as shown below, and these are used by an

input/ output instruction.

CHAPTER 3 CPU FUNCTIONS

44

<1> imm8

8-bit data in an operation code specifies the I/O address.

In this method, specification is limited to a 256-byte space on the lower side of the 64-K byte I/O

space.

This specification method is used by the following two instructions.

IN acc, imm8

OUT imm8, acc

<2> DW

The content of DW indicates the I/O address.

This method can be used to specify across the entire 64-K byte I/O space. This specification method

is used by the following four instructions.

IN acc, DW

INM dst_block, DW

OUT DW, acc

OUTM DW, src_block

(2) Memory addressing

Memory addressing specifies the operand data in memory.

This memory addressing is further divided into several modes by the 5-bit memory addressing specification field

placed after an op-code. In all memory addressing modes, a 16-bit offset address from the segment base

specified by the default or segment override is specified. Memory addressing is shown in the following

description.

Description Data Length

dmemNote 8/16-bit data

mem 8/16-bit data

mem8 8-bit data

mem16 16-bit data

Note Description in an instruction that has no memory addressing specification field

(a) Direct addressing

Indicates the memory address at which 2-byte data in an operation code is the read/write target of operand

data.

Example of usage:

MOV byte_var, 216 ; bytemem (offset (byte_var)) ← 216

(b) Register indirect addressing

Indicates the memory address at which the 16-bit register (BW or IX or IY) specified by the memory

addressing specification field in an operation code is the read/write target of operand data.

Example of usage:

MOV word ptr [BW], 10 ; wordmem (BW) ← 10

ADD AL, byte ptr [IX] ; AL ← AL + bytemem (IX)

CHAPTER 3 CPU FUNCTIONS

45

(c) Based addressing

Indicates the memory address at which the value of the 16-bit base register (BW or BP) specified by the

memory addressing specification field in an operation code added to a sign extended displacement value

indicated by 1-byte or 2-byte data in an operation code is the read/write target of operand data.

When BP is selected as the base register, the default segment register becomes SS, and it can be used

when the data pushed to the stack as an argument in procedure calling is accessed from the procedure.

Example of usage:

MOV word_var [BW+2], AW ; wordmem (offset (word_var)+BW+2) ← AW

SUB AW, [BP+6] ; AW ← AW – wordmem (BP+6)

(d) Indexed addressing

Indicates the memory address at which the value of the 16-bit indexed register (IX or IY) specified by the

memory addressing specification field in an operation code added to a sign extended displacement value

indicated by 1-byte or 2-byte data in an operation code is the read/write target of operand data.

Example of usage:

MOV word_var [IY+2], 0 ; wordmem (offset (word_var)+IY+2) ← 0

SUB AW, [IX+6] ; AW ← AW – wordmem (IX+6)

(e) Addressing with based index

Indicates the memory address at which the value of the 16-bit base register (BW or BP) specified by the

memory addressing specification field in an operation code added to a sign extended displacement

indicated by 1-byte or 2-byte data in an operation code plus the value of the 16-bit index register (IX or IY) is

the read/write target of operand data. That is, it performs addressing similar to a combination of based

addressing and indexed addressing.

This addressing can be used to access data that has a 2-dimensional array structure, etc.

Example of usage:

MOV word_var [BW+6] [IY+2],0 ; wordmem (offset (word_var)+BW+6+IY+2) ← 0

SUB AW, [BP+6+IX] ; AW ← AW – wordmem (BP+IX+6)

46

[MEMO]

47

CHAPTER 4 BUS CONTROL FUNCTIONS

The V30MZ executes 1 bus cycle in 1 clock.

Since accessing memory integrated on the same chip is possible in just 1 clock, it is possible to configure systems

that take advantage of both small-capacity, high-speed on-chip memory and large-capacity, low-cost external

memory by combining a wait insertion function.

4.1 Interface between V30MZ and Memory

As the V30MZ uses a 16-bit data bus, it is capable of transferring 16-bit word data in 1 bus cycle. However, this

applies only when an address generated by an instruction is even (A0 = 0), and if it is odd (A0 = 1) a word data

transfer requires 2 bus cycles.

Figure 4-1 shows the interface between the V30MZ and memory.

Figure 4-1. Interface between V30MZ and Memory

A19 to A1

V30MZ

A0

UBEB

DI15 to DI0

DO15 to DO0
Memory

Upper bank
(512 K bytes)

CSB

Memory

Lower bank
(512 K bytes)

DI15
to DI8

Address bus (19)

DO15
to DO8

DI7
 to DI0

DO7
 to DO0

8
8

8
8

Data input bus (16)

Data output bus (16)

CSB

In Figure 4-1, A0, when active low, enables the lower bank byte data of memory. Furthermore, aside from the

information from the address bus, the UBEB signal is output and when active low this also enables the byte data of

the memory higher bank.

(1) When accessing word data at odd address

In the first bus cycle, UBEB = 0 and A0 = 1, and only the higher byte is accessed and then UBEB = 1 is

automatically set, the lower 16 bits (A15 to A0) of the address information is incremented (+1). That is, A0 = 0 is

set, and the lower byte at the next address is accessed.

CHAPTER 4 BUS CONTROL FUNCTIONS

48

(2) When accessing word data at even address

Word data is accessed in 1-bus cycle with UBEB = 0 and A0 = 0.

Table 4-1 shows the relationship between the type of operand and the number of UBEB, A0 pins, and bus cycles.

Table 4-1. V30MZ Data Access

Operand UBEB pin output level A0 pin output level Number of Bus Cycles

Word at even address L L 1

Word at odd address 1st bus cycle L H 2

2nd bus cycle H L

Byte at even address H L 1

Byte at odd address L H 1

Remark L : low level

H : high level

Normally, the V30MZ performs an access (prefetch) of an operation code in word units. However, when a branch

to an odd address takes place, only 1 byte at that odd address is fetched and subsequent bytes are fetched again in

word units again.

When a vector table address is generated from the vector number (0 to 225), an even address is always

generated, and so an access to the interrupt vector table is always performed as word data at an even address.

Therefore, a vector table access to one interrupt is always performed in 2 bus cycles for the 2 words of the segment

base and offset.

4.1.1 Cautions on accessing word data

When accessing word data by the V30MZ, ensure that all the data that can be checked by the program may be

placed at an even address. When it is placed at an odd address, the result will be as follows.

One bus cycle for a memory access requires 1 clock. Therefore, every time word data at an odd address is

accessed, one extra clock of the instruction execution time are required compared to accessing word data at an even

address. This applies when executing an instruction that has more than one word data access.

In the case of a word data transfer from memory to memory, 2 memory accesses are required for a read from the

source and a write to the destination and so the execution time becomes the maximum when both are odd

addresses.

This problem of odd addresses also happens in stack manipulation. Registers, etc. are automatically saved to the

stack by interrupt servicing, but these are all word data and so when processed at an odd address, note that the

number of bus cycles is doubled and the interrupt response time is delayed.

Example: Number of execution clocks of MOV reg, mem instruction

Byte data : 1

Word data : 2 (For odd address)

: 1 (For even address)

This is an example in which one word data access is performed.

CHAPTER 4 BUS CONTROL FUNCTIONS

49

4.2 Interface between V30MZ and I/O

The segment system is not applied to an I/O address like memory.

In I/O address output timing, 0 is output to all the higher 4 bits (A19 to A16) of the address bus.

Data can be transferred between the V30MZ and I/O in either byte units or word units and both an 8-bit I/O device

and 16-bit I/O device can be connected. However, like memory for a word data access, 1 bus cycle for an even

address and 2 bus cycles for an odd address are used.

When accessing an 8-bit I/O device, A0 of the I/O address information is only used for device selection and values

higher than A1 are used for device selection and selection of several registers within one device. That is, all the

internal registers of the I/O device at an even address are also even and all the internal registers of the I/O device at

an odd address are selected with an odd number.

Use of a memory mapped I/O configuration (using the memory area by allocating it for I/O) allows the I/O to be

placed in a 1 M-byte memory space not in the I/O space.

Using the memory mapped I/O configuration, it is possible to perform a variety of addressing modes and operation

processing for the memory directly to the I/O device.

Caution However, with the memory mapped I/O, all control signals output from the V30MZ are for the

memory and so the I/O device is distinguished only by address information. Therefore, special

care is required to avoid contention between the addresses of variables and static data, etc.,

and the addresses allocated to the I/O.

CHAPTER 4 BUS CONTROL FUNCTIONS

50

4.3 Read/Write Timing of Memory and I/O

The V30MZ executes one bus cycle in at least 1 clock.

4.3.1 Read timing of memory and I/O

The V30MZ outputs the addresses (A19 to A0), UBEB signal, and bus status (BS3 to BS0) in synchronization with

the rising edge of the clock (CLK).

Data (DI15 to DI0) is read at the rising edge of the next CLK signal, and the READYB signal is sampled at the

same time. If the READYB signal is low at this time, the operation goes to the next bus cycle, and if the READYB

signal is high, the operation goes to the wait cycle (TW), and the current bus cycle is extended. In the TW state, the

A19 to A0 signals and the UBEB signal maintain their output value, but the BS3 to BS0 signals become high level.

Figure 4-2. Read Timing of Memory and I/O (1/2)

(a) With No Wait

CLK (input)

A19 to A0 (output)
UBEB (output)

BS3 (output)

DI15 to DI0 (input)

READYB (input)

TX

Don't care Don't care

BS2 (output)

BS1 (output)

BS0 (output) H

During memory read: H
During I/O read: L

During memory read: L
During I/O read: H

Remark { indicates the sampling timing.

CHAPTER 4 BUS CONTROL FUNCTIONS

51

Figure 4-2. Read Timing of Memory and I/O (2/2)

(b) With 1 Wait

CLK (input)

A19 to A0 (output)
UBEB (output)

BS3 (output)

DI15 to DI0 (input)

TX TW

Don't care Don't care
Don't
care

BS2 (output)

BS1 (output)

BS0 (output)

During memory read: H
During I/O read: L

During memory read: L
During I/O read: H

H

READYB (input)

Remark { indicates the sampling timing.

CHAPTER 4 BUS CONTROL FUNCTIONS

52

4.3.2 Write timing of memory and I/O

The V30MZ outputs the address (A19 to A0), UBEB signal, bus status (BS3 to BS0), and data (DO15 to DO0) in

synchronization with the rising edge of the clock (CLK).

Then at the next rising edge of the CLK signal, it samples the READYB signal. If the READYB signal is low at this

time, the operation goes to the next bus cycle, and if the READYB signal is high, the operation goes to the wait cycle

(TW), and the current bus cycle is extended. In the TW state, invalid data is output from the DO15 to DO0 pins.

Therefore, if a TW state is inserted to extend the bus cycle, latch the data from the DO15 to DO0 pins output at the

first bus cycle using an external circuit.

Moreover, in the TW state, the A19 to A0 signals and the UBEB signal maintain their output value, but the BS3 to

BS0 signals become high level.

Figure 4-3. Write Timing of Memory and I/O (1/2)

(a) With No Wait

CLK (input)

BS3 (output)

DO15 to DO0 (output)

READYB (input)

TX

Don't care Don't care

BS2 (output)

BS1 (output)

BS0 (output)

H

During memory write: H
During I/O write: L

During memory write: L
During I/O write: H

A19 to A0 (output)
UBEB (output)

Remark { indicates the sampling timing.

CHAPTER 4 BUS CONTROL FUNCTIONS

53

Figure 4-3. Write Timing of Memory and I/O (2/2)

(b) With 1 Wait

CLK (input)

A19 to A0 (output)
UBEB (output)

BS3 (output)

DO15 to DO0 (output)

READYB (input)

TX TW

Valid Invalid

Don't careDon't care
Don't
care

BS2 (output)

BS1 (output)

BS0 (output)

During memory write: H
During I/O write: L

During memory write: L
During I/O write: H

H

Remark { indicates the sampling timing.

CHAPTER 4 BUS CONTROL FUNCTIONS

54

4.4 Bus Hold Function

When a high level is input to the HLDRQ pin, the HLDAK signal becomes high level at the end of the bus cycle

that is currently being executed, and the V30MZ enters the bus hold state (TH). However, an idle cycle (TI) lasting 1

clock is always inserted immediately before the TH state.

In the TH state, the A19 to A0 signals, the UBEB signal, and the BS3 to BS0 signal become high level, but the

DO15 to DO0 signals output undefined data.

Next, when a low level is input to the HLDRQ pin, the HLDAK signal becomes low level, and the V30MZ returns to

the normal bus cycle. However, a TI state lasting 1 clock is always inserted immediately after the TH state.

In the TH state, no code fetch cycle is generated.

Figure 4-4. Bus Hold Timing

CLK (input)

A19 to A0 (output)
UBEB (output)

BS3 to BS0 (output)

DO15 to DO0 (output)

READYB (input)

Tx TITW

Valid

Don't
care

Don't
care

TH TH TH

HLDRQ (input)

HLDAK (output)

TX

Don't care

TITH

 Invalid

Remark { indicates the sampling timing.

55

CHAPTER 5 INTERRUPT FUNCTIONS

Interrupts of the V30MZ are roughly divided into two kinds; hardware interrupts and software interrupts. These

interrupts are all vectored interrupts that reference a vector table. An interrupt vector table stores the start address of

an interrupt service routine.

When an interrupt is generated, the V30MZ references the fixed 4 bytes (fixed vector) in the vector table

corresponding to the interrupt source or any 4 bytes (variable vector) specified each time and branches to the

address stored there (start address of the interrupt service routine).

The interrupt vector table is assigned to a 1 K-byte area 000H to 3FFH of the memory space and can define a

maximum of 256 vectors.

Table 5-1 shows the number of interrupt source clocks processed, vector numbers and priority order.

Figure 5-1 shows the interrupt vector table configuration.

Table 5-1. Interrupt Source List

Interrupt Source
Number of Clocks

ProcessedNote Vector No. Priority Order

NMI input (rising edge active) 26 2 2Hardware

interrupt INT input (high level active) 32 32 to 255 3

DIV or DIVU instruction divide error 0

CHKIND instruction boundary over 5

BRKV instruction 4

BRK 3 instruction 3

BRK imm8 instruction 32 to 255

1Software

interrupt

BRK flag (single-step)

25

1 4

Note The number of clocks after execution of an instruction is aborted by an interrupt until the program branches

to the start address of the interrupt service routine (progression of the wait state into the memory bus cycle

and bus hold request are not taken into account).

Remark The following three instructions have a relatively long execution time, and even if an interrupt request is

generated during their execution, their execution is not interrupted, and the interrupt request is

acknowledged after the execution is completed. This point should be paid attention to in the case of

systems for which the interrupt response time is particularly crucial.

Instruction
Number of Execution

Clocks
Remarks

DIVU 24 When divide error not generated due to DIVU instruction

DIV 25 When divide error not generated due to DIV instruction

PREPARE 139 When 2nd operand = 31

CHAPTER 5 INTERRUPT FUNCTIONS

56

Figure 5-1. Interrupt Vector Table Configuration

Vector 0
000H

003H

Vector 1
004H

007H

Vector 2
008H

00BH

Vector 3
00CH

00FH

Vector 4
010H

013H

Vector 5
014H

017H

Vector 6
018H

02BH
02CH

07BH

Vector 31
07CH

07FH

Vector 32
080H

083H
084H

3FBH

Vector 255
3FCH

3FFH

DIV or DIVU instruction
divide error

BRK flag
(Single-step)

NMI input

BRK 3 instruction

BRKV instruction

CHKIND instruction
boundary over

Reserved

General use
• BRK imm8 instruction
• INT input

Dedicated
use

…

…

For vectors 0 to 5, the interrupt sources to be used are specified and vectors 6 to 31 are reserved and are not

available for general use.

For vectors 32 to 255, BRK imm8 instruction, and INT input are available for general use.

One interrupt vector consists of 4 bytes and the higher address 2 bytes are loaded to the program segment

register (PS) as a base address pointer (program segment value) and the lower address 2 bytes are loaded to the

program counter (PC) as an offset value.

Example: Vector 0

003H

002H

001H

000H

PS ← (003H, 002H)

PC ← (001H, 000H)

When creating a program, initialize the content of each vector used based on the example above in the beginning

of the program.

CHAPTER 5 INTERRUPT FUNCTIONS

57

The following are the basic steps when jumping to an interrupt service routine.

TA← vector lower word data (offset value)

TC← vector higher word data (program segment value)

SP← SP–2, (SP+1, SP) ← PSW

IE← 0, BRK ← 0, MD ← 1

SP ← SP–2, (SP+1, SP) ← PS

PS ← TC

SP ← SP–2, (SP+1, SP) ← PC

PC ← TA

Caution Since the interrupt enable flag (IE) and break flag (BRK) of the program status word (PSW) are

cleared (0) when interrupt servicing is started, no maskable interrupt (INT) or BRK flag (single-

step) interrupt is acknowledged any longer.

CHAPTER 5 INTERRUPT FUNCTIONS

58

5.1 Hardware Interrupt

There are two kinds of hardware interrupt.

• Non-maskable interrupt (NMI)

• Maskable interrupt (INT)

5.1.1 Non-maskable interrupt (NMI)

NMI is a non-maskable interrupt and cannot be disabled by software. Whenever there is an input to the NMI pin

from a peripheral device, it is always acknowledged and detected on a rising edge.

NMI takes precedence over INT and is used to cope with abrupt variation of the normal power supply

(instantaneous power failure) and memory error, bus error, etc.

No interrupt acknowledge cycle is issued by NMI and no interrupt acknowledge is output, either.

Caution NMI requests are acknowledged even immediately after reset (INT requests are not

acknowledged), but until the correct value is loaded to the stack pointer (SS:SP), normal NMI

processing cannot be performed. Therefore, implement measures such as masking the NMI

input with an external circuit.

5.1.2 Maskable interrupt (INT)

Maskable interrupts (INT) are acknowledged with the following response sequence. Prepare the interrupt

acknowledge signal by decoding the BS3 to BS0 signals (when BS3 to BS0 are all low level).

CHAPTER 5 INTERRUPT FUNCTIONS

59

Figure 5-2. Interrupt Acknowledge Cycle

CLK (input)

A19 to A0 (output)

BS0 (output)

DI15 to DI0 (input)

1st bus
cycle TI TI

Invalid InvalidInvalid

TI TI

BUSLOCKB (output)

2nd bus

cycle

Invalid
Interrupt
vector
number

BS3 (output)

BS2 (output)

BS1 (output)

UBEB (output) H

(1) The 1st bus cycle is activated to obtain synchronization with the external interrupt controller. The values

read from the data bus (DI15 to DI0) are not used.

At this time, address 00000H is output to the address bus (A19 to A0), but this value has no meaning.

Moreover, a wait cycle can be inserted by using the READYB signal.

(2) Four clocks of idle cycle (TI) are inserted between the 1st bus cycle and the 2nd bus cycle. During this

interval, the BUSLOCKB signal remains low. No code fetch cycle is generated between the 1st bus cycle

and the 2nd bus cycle.

(3) The V30MZ reads the vector number from the interrupt controller during the 2nd bus cycle (only lower byte

of data bus is valid). At this time, address 00000H is output to the address bus, but this value is

meaningless.

Moreover, similarly to the 1st bus cycle, a wait cycle can be inserted by using the READYB signal.

Remark Whereas in the case of the V30HL, UBE output is always low level during the interrupt acknowledge

cycle, in the case of the V30MZ, UBEB output is always high level. (UBEB output becomes low level

only when the start address of the interrupt processing routine is read.)

CHAPTER 5 INTERRUPT FUNCTIONS

60

5.2 Software Interrupts

Software interrupts take precedence over hardware interrupts except a BRK flag (single-step) interrupts.

They can be divided as follows.

(1) Interrupt by instruction result

• Divide error by DIV instruction or DIVU instruction

• Boundary over detection by CHKIND instruction

When the processing result of an instruction is invalid, an interrupt is automatically generated to allow

exception handling.

(2) Interrupt by conditional break (execution of BRKV instruction)

In execution of a BRKV instruction, if the V flag is set (1), an interrupt is generated. It is used for processing

an overflow of the operation result.

(3) Interrupt by unconditional break instruction

• 1-byte break instruction (BRK 3)

• 2-byte break instruction (BRK imm8 (≠ 3))

This interrupt is used when branching to a subroutine by a system call or inter-segment call without being

aware of the branch destination.

(4) BRK flag (single-step) interrupt

This is a useful function for program debugging, etc.

This interrupt is controlled by the BRK flag of PSW. However, it is manipulated with the PSW saved to the

stack, not by an instruction which directly sets/clears the BRK flag and set/cleared processing is indirectly

performed by restoring it to the PSW.

When the BRK flag is set (1), after the next one instruction is executed, the interrupt routine (monitor

program, etc.) specified by vector 1 is started and the BRK flag is also cleared (0) together with the IE flag

at that time.

Therefore, once the vector 1 interrupt is started, interrupt routine instructions are not executed one by one

but continuously in the same way as for other interrupts. Here, the internal registers, flag state, memory

content, etc., can be checked and dumped.

In this interrupt routine, the number of single-steps is checked and if it is possible to terminate the single-

step operation, the BRK flag in the stack is cleared (0) by a memory manipulation instruction and returned.

This allows instructions to be executed continuously after returning to the main routine.

When returning without manipulating the BRK flag, BRK = 1 saved in the stack is restored to the PSW and

after execution of one instruction in the main routine a vector 1 interrupt is generated again.

CHAPTER 5 INTERRUPT FUNCTIONS

61

5.3 Timing at which Interrupt is Not Acknowledged

In the timing shown in (1) to (4) below, that is, between an instruction in which data is directly set in the segment

register or 3 types of prefix and the following one instruction, no hardware interrupt or BRK flag (single-step) interrupt

is acknowledged. Furthermore, only the INT interrupt is not acknowledged in the timing shown in (5).

With the following 5 timings, no interrupt is acknowledged.

(1) Between each of MOV SS, reg 16; MOV SS, mem16; POP SS instructions and the next instruction

(2) Between segment override prefix (PS:, SS:, DS0:, DS1:) and the next instruction

(3) Between repeat prefix (REP, REPE, REPNE) and the next instruction

(4) Between BUSLOCK instruction and the next instruction

(5) Between each of EI, RETI, and POP PSW instructions (in case an IE flag of the PSW register is set (1) by

executing the instruction) and the next instruction (only INT interrupt)

However, an NMI request signal generated in interrupt disable timings in (1) to (4) is held pending internally and

acknowledged after execution of the next one instruction is completed.

Moreover, if the timing of (5) is generated with an IE flag set, the INT interrupt is acknowledged even immediately

after the execution of these instructions.

CHAPTER 5 INTERRUPT FUNCTIONS

62

5.4 Interrupt Servicing in Execution of Block Processing Instruction

When a hardware interrupt request is generated in execution of a primitive block transfer/comparison, or input

instruction, the V30MZ acknowledges it and branches to the corresponding interrupt address.

However, in a block processing instruction, immediately after completion of the bus cycle in which an interrupt is

generated, the interrupt may not be acknowledged. In that case, it takes several bus cycles after generation of the

interrupt until the V30MZ can acknowledge the interrupt. Table 5-2 shows the number of bus cycles. In this table,

the bus cycle in which an interrupt is generated is counted as the first bus cycle.

Table 5-2. Number of Bus Cycles Required until Interrupt is Acknowledged

Instruction IX Register IY Register Number of Bus Cycles Required until Interrupt is Acknowledged

MOVBKW Even Even 2 to 4

Even Odd 3 to 6

Odd Even 2 to 5

Odd Odd 3 to 7

MOVBKB – – 2 to 4

CMPBKW Even Even 1, 2

Even Odd 1 to 3

Odd Even 1 to 3

Odd Odd 1 to 4

CMPBKB – – 1, 2

CMPMW – Even 1

– Odd 1, 2

CMPMB – – 1

LDMW Even – 1

Odd – 1, 2

LDMB – – 1

STMW – Even 3, 4

– Odd 3 to 5

STMB – – 3, 4

Example 1. When an interrupt request is generated in execution of MOVBKB instruction

MOVBKB bus cycle

Interrupt servicing

INT input or NMI input

CHAPTER 5 INTERRUPT FUNCTIONS

63

Example 2. When an interrupt request is generated in execution of STMB instruction

STMB bus cycle

Interrupt servicing

INT input or NMI input

If at the start of an interrupt service routine started in this way the CW register operating as a counter for the block

data is saved to the stack and the saved CW register is restored at the end of the interrupt service routine and then

the original routine is returned to by an RETI instruction, the suspended block processing can be restarted.

At this time, if a prefix is placed before the block processing instruction, the return address is modified (–1 address

for one kind of prefix) and saved so that up to 3 kinds of prefix are stored and can be returned to the address at

which the prefix is placed when returning from the interrupt service routine.

In order to use these functions effectively, set the sum of prefixes placed before a block processing instruction to

three or less.

64

[MEMO]

65

CHAPTER 6 STANDBY FUNCTIONS

6.1 Setting of Standby Mode

Executing a HALT instruction sets the standby (HALT) mode.

In the standby mode, the clock is supplied only to the circuit related to the function required for releasing the

standby mode and the circuit related to the bus hold function, and its supply to all other circuits is stopped.

As a result, the system's power consumption is considerably reduced.

6.2 Standby Mode

When the V30MZ enters the standby mode, the BS3 to BS0 signals output the HALT status for 1 clock. Then the

A19 to A0 signals, the UBEB signal, and the BS3 to BS0 signals become high level. DO15 to DO0 outputs become

undefined.

Figure 6-1. Timing to Enter Standby Mode

The bus hold function is also valid in the standby mode, but when the bus hold acknowledge period ends, the

system returns to the standby mode. However, when the system returns to the standby mode, there is no HALT

status output from the BS3 to BS0 pins (the idle status continues).

CLK (input)

A19 to A0 (output)
UBEB (output)

BS3 (output)

DO15 to DO0 (output) Undefined

BS2 (output)

BS1 (output)

BS0 (output)

H

CHAPTER 6 STANDBY FUNCTIONS

66

6.3 Release of Standby Mode

There are two ways to release the standby mode: release by a hardware interrupt (NMI input or INT input) and

release by RESET input. When both inputs become active at the same time, the normal interrupt priority order

applies.

6.3.1 Release by hardware interrupt request

Cautions 1. When the bus hold request and hardware interrupt request are issued at the same time, the

bus hold request takes priority, and after the bus hold cycle ends, the standby mode is

released by hardware interrupt request.

2. When the HALT instruction and the hardware interrupt request are issued at the same time,

the HALT status is output from the BS3 to BS0 pins, but the V30MZ does not enter the

standby mode, and instead immediately performs interrupt processing (or the instruction

following the HALT instruction).

(1) Release by NMI input

Upon detection of the rising edge of NMI input, the standby mode is released and the interrupt processing (NMI

routine) starts. Then, when the RETI instruction is executed upon completion of the NMI routine, program

execution resumes from the instruction following the HALT instruction.

(2) Release by INT input

The operation after release of the standby mode differs depending on whether the system is in the interrupt

enable status (IE flag of PSW = 1) or in the interrupt disable status (IE flag of PSW = 0).

(a) Interrupt enable status

When there is an INT input, the standby mode is released and interrupt processing (INT routine) starts.

Then, when the RETI instruction is executed upon completion of the INT routine, program execution

resumes from the instruction following the HALT instruction.

Caution Input the high level to the INT pin until the 1st bus cycle of the interrupt acknowledge

cycle.

(b) Interrupt disable status

When there is an INT input, the standby mode is released and program execution resumes from the

instruction following the HALT instruction.

Caution Input the high level to the INT pin for the interval of one clock or longer.

CHAPTER 6 STANDBY FUNCTIONS

67

6.3.2 Release by RESET input

When the RESET signal is input in the standby mode, the standby mode is released unconditionally, and the

system starts normal reset operation. Therefore, the status that was held in the standby mode becomes invalid, and

the program that was stopped by the standby mode cannot be resumed.

68

[MEMO]

69

CHAPTER 7 RESET FUNCTIONS

When a high level is input to the RESET pin for 4 clocks or more, each output pin of the V30MZ changes to the

statuses shown in Table 7-1. They retain these values while the high level is input.

A setup time and hold time are prescribed for the rising edge of the CLK pin for RESET input. Be sure to perform

RESET input so as to satisfy these prescriptions.

Table 7-1. Status of Output Pins after Reset

Pin Status after Reset

A19 to A0 High-level output

DO15 to DO0 Undefined

UBEB High-level output

BUSLOCKB

BS3 to BS0

HLDAK Low-level output

TBO42 to TBO0 High impedance

Each register is initialized to the value shown in Table 7-2 following reset.

Table 7-2. Initial Value of Registers after Reset

Register Initial Value

PC 0000H

PFP

PS FFFFH

SS, DS0, DS1 0000H

AW, BW, CW, DW Undefined

SP, BP

IX, IY

MD V DIR IE BRK

Higher 1 1 1 1 0 0 0 0

S Z AC P CY

Lower 0 0 0 0 0 0 1 0

PSW

When the signal input to the RESET pin goes back to low level, the V30MZ starts instruction prefetch from

address FFFF0H (segment value: FFFFH, offset value: 0000H).

70

[MEMO]

71

CHAPTER 8 TEST FUNCTIONS

The V30MZ has unit test functions using the test bus like other CBIC cores.

8.1 Test Pins

The V30MZ has the following test pins.

• TBI22 to TBI0

• TBO42 to TBO0

• BUNRI

• TEST

8.1.1 Test bus pins (TBI22 to TBI0, TBO42 to TBO0)

The test bus pins are used instead of normal pins in the unit test mode.

For details, see the Design Manual User's Manual of each cell-based IC Family.

8.1.2 BUNRI, TEST pins

These pins are used to select the normal, unit test, or standby test mode.

Table 8-1. Test Mode Selection List

BUNRI Pin Input Level TEST Pin Input Level Mode

Low level don't care Normal mode

High level Low level Standby test mode

High level High level Unit test mode

CHAPTER 8 TEST FUNCTIONS

72

8.2 Normal Mode

This is the mode normally used by the user.

When the low level is input to the BUNRI pin, pins other than test pins become valid and the normal mode is

entered. At this time, inputs to the TBI22 to TBI0 pins are ignored, and the TBO42 to TBO0 pins go into high

impedance.

8.3 Unit Test Mode and Standby Test Mode

When the high level is input to the BUNRI pin, inputs to pins other than test pins are ignored (become invalid), and

the system enters the test mode. There are two test modes, the unit test mode and the standby test mode.

Perform circuit design so that the bus configuration pins (except test pins) do not become floating level or cause

bus contention during the unit test mode and the standby test mode. (For details on the status of pins in each mode,

see Section 2.2 Pin Statuses .)

8.3.1 Unit test mode

When the high level is input to the BUNRI pin and the TEST pin, the system enters the unit test mode. In the unit

test mode, inputs to pins other than test pins are ignored, and inputs to the TBI22 to TBI0 pins become valid instead.

Moreover, values for the pins other than test pins are output to the TBO42 to TBO0 pins.

Caution The unit test mode is a mode for testing performed by NEC.

8.3.2 Standby test mode

When the high level is input to the BUNRI pin and the low level is input to the TEST pin, the system enters the

standby test mode.

This mode is used for cores that are not tested during test circuit verification simulation and user logic separation

simulation.

Inputs to the TBI22 to TBI0 pins are ignored and the TBO42 to TBO0 pins go into high impedance.

73

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

This appendix shows the number of execution clocks for each instruction under conditions (1) to (7) listed below.

For details on the functions of each instruction, refer to the 16-Bit V Series Instruction User’s Manual .

(1) Instruction decoding is completed.

(2) No wait state occurs during memory access or I/O access.Note 1

(3) There is no bus hold request.

(4) Word data is allocated to even addresses.Note 2

(5) Registers required for calculating effective addresses (BW, BP, SP, IX, IY, etc.) do not change at

immediately preceding instruction.Note 3

(6) There is only 1 register required for calculating effective addresses.Note 4

(7) The branching destination of a branch instruction is an even address.Note 5

Notes 1. If a wait state is generated, add the number of clocks of the wait state to the number of instruction

execution clocks.

2. When access to word data allocated to odd addresses is performed, add 1 clock.

3. When using a register that changed in the immediately preceding instruction for calculating the

effective address, add 1 clock.

(However, 1 clock does not increase in the case of the LDEA instruction and the repeat prefetch

instruction.)

Moreover, in the case of consecutive PUSH or POP instruction, the number of execution clocks does

not increase (they are all executed in 1 clock.)

4. If there are two registers required for calculating the effective address (for example MOV AW,[BW+IX]),

add 1 clock.

5. If branching to an odd address is performed, add 1 clock.

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

74

Table A-1. List of Instruction Execution Clock Counts (1/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

0 0 0 0 0 1 0 W imm8 or imm16-low
ADD acc, imm

imm16-high —
1

1 0 0 0 0 0 s W mod 0 0 0 mem

(disp-low) (disp-high)ADD mem, imm

imm8 or imm16-low imm16-high

3

0 0 0 0 0 0 0 W mod reg mem
ADD mem, reg

(disp-low) (disp-high)
3

1 0 0 0 0 0 s W 1 1 0 0 0 reg
ADD reg, imm

imm8 or imm16-low imm16-high
1

0 0 0 0 0 0 1 W mod reg mem
ADD reg, mem

(disp-low) (disp-high)
2

ADD reg, reg' 0 0 0 0 0 0 1 W 1 1 reg reg' 1

ADD reg, reg' 0 0 0 0 0 0 0 W 1 1 reg reg' 1

0 0 0 1 0 1 0 W imm8 or imm16-low
ADDC acc, imm

imm16-high —
1

1 0 0 0 0 0 s W mod 0 1 0 mem

(disp-low) (disp-high)ADDC mem, imm

imm8 or imm16-low imm16-high

3

0 0 0 1 0 0 0 W mod reg mem
ADDC mem, reg

(disp-low) (disp-high)
3

1 0 0 0 0 0 s W 1 1 0 1 0 reg
ADDC reg, imm

imm8 or imm16-low imm16-high
1

0 0 0 1 0 0 1 W mod reg mem
ADDC reg, mem

(disp-low) (disp-high)
2

ADDC reg, reg' 0 0 0 1 0 0 1 W 1 1 reg reg' 1

ADDC reg, reg' 0 0 0 1 0 0 0 W 1 1 reg reg' 1

ADJ4A 0 0 1 0 0 1 1 1 — 10

ADJ4S 0 0 1 0 1 1 1 1 — 10

ADJBA 0 0 1 1 0 1 1 1 — 9

ADJBS 0 0 1 1 1 1 1 1 — 9

0 0 1 0 0 1 0 W imm8 or imm16-low
AND acc, imm

imm16-high —
1

1 0 0 0 0 0 0 W mod 1 0 0 mem

(disp-low) (disp-high)AND mem, imm

imm8 or imm16-low imm16-high

3

0 0 1 0 0 0 0 W mod reg mem
AND mem, reg

(disp-low) (disp-high)
3

1 0 0 0 0 0 0 W 1 1 1 0 0 reg
AND reg, imm

imm8 or imm16-low imm16-high
1

0 0 1 0 0 0 1 W mod reg mem
AND reg, mem

(disp-low) (disp-high)
2

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

75

Table A-1. List of Instruction Execution Clock Counts (2/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

AND reg, reg' 0 0 1 0 0 0 1 W 1 1 reg reg' 1

AND reg, reg' 0 0 1 0 0 0 0 W 1 1 reg reg' 1

BC short-label 0 1 1 1 0 0 1 0 disp8 1 (When CY = 0)

BC short-label 0 1 1 1 0 0 1 0 disp8 4 (When CY = 1)

BCWZ short-label 1 1 1 0 0 0 1 1 disp8 1 (When CW ≠ 0)

BCWZ short-label 1 1 1 0 0 0 1 1 disp8 4 (When CW = 0)

BE short-label 0 1 1 1 0 1 0 0 disp8 1 (When Z = 0)

BE short-label 0 1 1 1 0 1 0 0 disp8 4 (When Z = 1)

BGE short-label 0 1 1 1 1 1 0 1 disp8 1 (When S ∀ V = 1)

BGE short-label 0 1 1 1 1 1 0 1 disp8 4 (When S ∀ V = 0)

BGT short-label 0 1 1 1 1 1 1 1 disp8 1 (When (S ∀ V) ∨ Z = 1)

BGT short-label 0 1 1 1 1 1 1 1 disp8 4 (When (S ∀ V) ∨ Z = 0)

BH short-label 0 1 1 1 0 1 1 1 disp8 1 (When CY ∨ Z = 1)

BH short-label 0 1 1 1 0 1 1 1 disp8 4 (When CY ∨ Z = 0)

BL short-label 0 1 1 1 0 0 1 0 disp8 1 (When CY = 0)

BL short-label 0 1 1 1 0 0 1 0 disp8 4 (When CY = 1)

BLE short-label 0 1 1 1 1 1 1 0 disp8 1 (When (S ∀ V) ∨ Z = 0)

BLE short-label 0 1 1 1 1 1 1 0 disp8 4 (When (S ∀ V) ∨ Z = 1)

BLT short-label 0 1 1 1 1 1 0 0 disp8 1 (When S ∀ V = 0)

BLT short-label 0 1 1 1 1 1 0 0 disp8 4 (When S ∀ V = 1)

BN short-label 0 1 1 1 1 0 0 0 disp8 1 (When S = 0)

BN short-label 0 1 1 1 1 0 0 0 disp8 4 (When S = 1)

BNC short-label 0 1 1 1 0 0 1 1 disp8 1 (When CY = 1)

BNC short-label 0 1 1 1 0 0 1 1 disp8 4 (When CY = 0)

BNE short-label 0 1 1 1 0 1 0 1 disp8 1 (When Z = 1)

BNE short-label 0 1 1 1 0 1 0 1 disp8 4 (When Z = 0)

BNH short-label 0 1 1 1 0 1 1 0 disp8 1 (When CY ∨ Z = 0)

BNH short-label 0 1 1 1 0 1 1 0 disp8 4 (When CY ∨ Z = 1)

BNL short-label 0 1 1 1 0 0 1 1 disp8 1 (When CY = 1)

BNL short-label 0 1 1 1 0 0 1 1 disp8 4 (When CY = 0)

BNV short-label 0 1 1 1 0 0 0 1 disp8 1 (When V = 1)

BNV short-label 0 1 1 1 0 0 0 1 disp8 4 (When V = 0)

BNZ short-label 0 1 1 1 0 1 0 1 disp8 1 (When Z = 1)

BNZ short-label 0 1 1 1 0 1 0 1 disp8 4 (When Z = 0)

BP short-label 0 1 1 1 1 0 0 1 disp8 1 (When S = 1)

BP short-label 0 1 1 1 1 0 0 1 disp8 4 (When S = 0)

BPE short-label 0 1 1 1 1 0 1 0 disp8 1 (When P = 0)

BPE short-label 0 1 1 1 1 0 1 0 disp8 4 (When P = 1)

BPO short-label 0 1 1 1 1 0 1 1 disp8 1 (When P = 1)

BPO short-label 0 1 1 1 1 0 1 1 disp8 4 (When P = 0)

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

76

Table A-1. List of Instruction Execution Clock Counts (3/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

1 1 1 0 1 0 1 0 offset-low

offset-high seg-lowBR far-label

seg-high —

7

1 1 1 1 1 1 1 1 mod 1 0 0 mem
BR memptr16

(disp-low) (disp-high)
5

1 1 1 1 1 1 1 1 mod 1 0 1 mem
BR memptr32

(disp-low) (disp-high)
10

1 1 1 0 1 0 0 1 disp-low
BR near-label

disp-high —
4

BR regptr16 1 1 1 1 1 1 1 1 1 1 1 0 0 reg 4

BR short-label 1 1 1 0 1 0 1 1 disp8 4

BRK 3 1 1 0 0 1 1 0 0 — 9

BRK imm8 (≠ 3) 1 1 0 0 1 1 0 1 imm8 10

BRKV 1 1 0 0 1 1 1 0 — 6 (When V = 0)

BRKV 1 1 0 0 1 1 1 0 — 13 (When V = 1)

BUSLOCK 1 1 1 1 0 0 0 0 — 1

BV short-label 0 1 1 1 0 0 0 0 disp8 1 (When V = 0)

BV short-label 0 1 1 1 0 0 0 0 disp8 4 (When V = 1)

BZ short-label 0 1 1 1 0 1 0 0 disp8 1 (When Z = 0)

BZ short-label 0 1 1 1 0 1 0 0 disp8 4 (When Z = 1)

1 0 0 1 1 0 1 0 offset-low

offset-high seg-lowCALL far-proc

seg-high —

10

1 1 1 1 1 1 1 1 mod 0 1 0 mem
CALL memptr16

(disp-low) (disp-high)
6

1 1 1 1 1 1 1 1 mod 0 1 1 mem
CALL memptr32

(disp-low) (disp-high)
12

1 1 1 0 1 0 0 0 disp-low
CALL near-proc

disp-high —
5

CALL regptr16 1 1 1 1 1 1 1 1 1 1 0 1 0 reg 5

0 1 1 0 0 0 1 0 mod reg mem
CHKIND reg16, mem32

(disp-low) (disp-high)

13 (when interrupt

condition is not satisfied)

0 1 1 0 0 0 1 0 mod reg mem
CHKIND reg16, mem32

(disp-low) (disp-high)

20 (when interrupt

condition is satisfied)

CLR1 CY 1 1 1 1 1 0 0 0 — 4

CLR1 DIR 1 1 1 1 1 1 0 0 — 4

0 0 1 1 1 1 0 W imm8 or imm16-low
CMP acc, imm

imm16-high —
1

1 0 0 0 0 0 s W mod 1 1 1 mem

(disp-low) (disp-high)CMP mem, imm

imm8 or imm16-low imm16-high

2

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

77

Table A-1. List of Instruction Execution Clock Counts (4/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

0 0 1 1 1 0 0 W mod reg mem
CMP mem, reg

(disp-low) (disp-high)
2

1 0 0 0 0 0 s W 1 1 1 1 1 reg
CMP reg, imm

imm8 or imm16-low imm16-high
1

0 0 1 1 1 0 1 W mod reg mem
CMP reg, mem

(disp-low) (disp-high)
2

CMP reg, reg' 0 0 1 1 1 0 1 W 1 1 reg reg' 1

CMP reg, reg' 0 0 1 1 1 0 0 W 1 1 reg reg' 1

CMPBK [DS1-spec:]dst-block 1 0 1 0 0 1 1 W — 6

CMPBK [Seg-spec:]src-block,
[DS1-spec:]dst-block 1 0 1 0 0 1 1 W — 6

CMPBKB 1 0 1 0 0 1 1 W — 6

CMPBKW 1 0 1 0 0 1 1 W — 6

CMPM [DS1-spec:]dst-block 1 0 1 0 1 1 1 W — 4

CMPMB 1 0 1 0 1 1 1 W — 4

CMPMW 1 0 1 0 1 1 1 W — 4

CVTBD 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 17

CVTBW 1 0 0 1 1 0 0 0 — 1

CVTDB 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 6

CVTWL 1 0 0 1 1 0 0 1 — 1

DBNZ short-label 1 1 1 0 0 0 1 0 disp8 2 (When CW = 0)

DBNZ short-label 1 1 1 0 0 0 1 0 disp8 5 (When CW ≠ 0)

DBNZE short-label 1 1 1 0 0 0 0 1 disp8 6 (when CW ≠ 0 and Z = 1)

DBNZE short-label 1 1 1 0 0 0 0 1 disp8 3 (in cases other than above)

DBNZNE short-label 1 1 1 0 0 0 0 0 disp8 6 (when CW ≠ 0 and Z = 0)

DBNZNE short-label 1 1 1 0 0 0 0 0 disp8 3 (in cases other than above)

1 1 1 1 1 1 1 W mod 0 0 1 mem
DEC mem

(disp-low) (disp-high)
3

DEC reg16 0 1 0 0 1 reg — 1

DEC reg8 1 1 1 1 1 1 1 W 1 1 0 0 1 reg 1

DI 1 1 1 1 1 0 1 0 — 4

DISPOSE 1 1 0 0 1 0 0 1 — 2

1 1 1 1 0 1 1 W mod 1 1 1 mem
DIV mem16

(disp-low) (disp-high)
25

1 1 1 1 0 1 1 W mod 1 1 1 mem
DIV mem8

(disp-low) (disp-high)
18

DIV reg16 1 1 1 1 0 1 1 W 1 1 1 1 1 reg 24

DIV reg8 1 1 1 1 0 1 1 W 1 1 1 1 1 reg 17

1 1 1 1 0 1 1 W mod 1 1 0 mem
DIVU mem16

(disp-low) (disp-high)
24

1 1 1 1 0 1 1 W mod 1 1 0 mem
DIVU mem8

(disp-low) (disp-high)
16

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

78

Table A-1. List of Instruction Execution Clock Counts (5/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

DIVU reg16 1 1 1 1 0 1 1 W 1 1 1 1 0 reg 23

DIVU reg8 1 1 1 1 0 1 1 W 1 1 1 1 0 reg 15

DS0: 0 0 1 1 1 1 1 0 — 1

DS1: 0 0 1 0 0 1 1 0 — 1

EI 1 1 1 1 1 0 1 1 — 4

1 1 0 1 1 X X X mod Y Y Y mem
FPO1 fp-op, mem

(disp-low) (disp-high)
1

HALT 1 1 1 1 0 1 0 0 — 9

IN acc, DW 1 1 1 0 1 1 0 W — 6

IN acc, imm8 1 1 1 0 0 1 0 W imm8 6

1 1 1 1 1 1 1 W mod 0 0 0 mem
INC mem

(disp-low) (disp-high)
3

INC reg16 0 1 0 0 0 reg — 1

INC reg8 1 1 1 1 1 1 1 W 1 1 0 0 0 reg 1

INM [DS1-spec:]dst-block, DW 0 1 1 0 1 1 0 W — 6

1 0 0 0 1 1 0 1 mod reg mem
LDEA reg16, mem16

(disp-low) (disp-high)
1

LDM [Seg-spec:]src-block 1 0 1 0 1 1 0 W — 3

LDMB 1 0 1 0 1 1 0 W — 3

LDMW 1 0 1 0 1 1 0 W — 3

1 0 1 0 0 0 0 W addr-low
MOV acc, dmem

addr-high —
1

MOV AH, PSW 1 0 0 1 1 1 1 1 — 2

1 0 1 0 0 0 1 W addr-low
MOV dmem, acc

addr-high —
1

1 1 0 0 0 1 0 1 mod reg mem
MOV DS0, reg16, mem32

(disp-low) (disp-high)
6

1 1 0 0 0 1 0 0 mod reg mem
MOV DS1, reg16, mem32

(disp-low) (disp-high)
6

1 1 0 0 0 1 1 W mod 0 0 0 mem

(disp-low) (disp-high)MOV mem, imm

imm8 or imm16-low imm16-high

1

1 0 0 0 1 0 0 W mod reg mem
MOV mem, reg

(disp-low) (disp-high)
1

1 0 0 0 1 1 0 0 mod 0 sreg mem
MOV mem16, sreg

(disp-low) (disp-high)
3

MOV PSW, AH 1 0 0 1 1 1 1 0 — 4

1 0 1 1 W reg imm8 or imm16-low
MOV reg, imm

imm16-high —
1

1 1 0 0 0 1 1 W 1 1 0 0 0 reg
MOV reg, imm

imm8 or imm16-low imm16-high
1

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

79

Table A-1. List of Instruction Execution Clock Counts (6/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

1 0 0 0 1 0 1 W mod reg mem
MOV reg, mem

(disp-low) (disp-high)
1

MOV reg, reg' 1 0 0 0 1 0 1 W 1 1 reg reg' 1

MOV reg, reg' 1 0 0 0 1 0 0 W 1 1 reg reg' 1

MOV reg16, sreg 1 0 0 0 1 1 0 0 1 1 0 sreg reg 1

1 0 0 0 1 1 1 0 mod 0 sreg mem
MOV sreg, mem16

(disp-low) (disp-high)
3

MOV sreg, reg16 1 0 0 0 1 1 1 0 1 1 0 sreg reg 2

MOVBK [DS1-spec:]dst-block,
[Seg-spec:]src-block 1 0 1 0 0 1 0 W — 5

MOVBK [Seg-spec:]src-block 1 0 1 0 0 1 0 W — 5

MOVBKB 1 0 1 0 0 1 0 W — 5

MOVBKW 1 0 1 0 0 1 0 W — 5

1 1 1 1 0 1 1 W mod 1 0 1 mem
MUL mem16

(disp-low) (disp-high)
4

1 1 1 1 0 1 1 W mod 1 0 1 mem
MUL mem8

(disp-low) (disp-high)
4

MUL reg16 1 1 1 1 0 1 1 W 1 1 1 0 1 reg 3

0 1 1 0 1 0 s 1 1 1 reg reg'
MUL reg16, imm16

imm16-low imm16-high
3

0 1 1 0 1 0 s 1 1 1 reg reg'
MUL reg16, imm8

imm8 —
3

0 1 1 0 1 0 s 1 mod reg mem

(disp-low) (disp-high)MUL reg16, mem16, imm16

imm16-low imm16-high

4

0 1 1 0 1 0 s 1 mod reg mem

(disp-low) (disp-high)MUL reg16, mem16, imm8

imm8 —

4

0 1 1 0 1 0 s 1 1 1 reg reg'
MUL reg16, reg16' , imm16

imm16-low imm16-high
3

0 1 1 0 1 0 s 1 1 1 reg reg'
MUL reg16, reg16' , imm8

imm8 —
3

MUL reg8 1 1 1 1 0 1 1 W 1 1 1 0 1 reg 3

1 1 1 1 0 1 1 W mod 1 0 0 mem
MULU mem16

(disp-low) (disp-high)
4

1 1 1 1 0 1 1 W mod 1 0 0 mem
MULU mem8

(disp-low) (disp-high)
4

MULU reg16 1 1 1 1 0 1 1 W 1 1 1 0 0 reg 3

MULU reg8 1 1 1 1 0 1 1 W 1 1 1 0 0 reg 3

1 1 1 1 0 1 1 W mod 0 1 1 mem
NEG mem

(disp-low) (disp-high)
3

NEG reg 1 1 1 1 0 1 1 W 1 1 0 1 1 reg 1

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

80

Table A-1. List of Instruction Execution Clock Counts (7/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

NOP 1 0 0 1 0 0 0 0 — 1

1 1 1 1 0 1 1 W mod 0 1 0 mem
NOT mem

(disp-low) (disp-high)
3

NOT reg 1 1 1 1 0 1 1 W 1 1 0 1 0 reg 1

NOT1 CY 1 1 1 1 0 1 0 1 — 4

0 0 0 0 1 1 0 W imm8 or imm16-low
OR acc, imm

imm16-high
1

1 0 0 0 0 0 0 W mod 0 0 1 mem

(disp-low) (disp-high)OR mem, imm

imm8 or imm16-low imm16-high

3

0 0 0 0 1 0 0 W mod reg mem
OR mem, reg

(disp-low) (disp-high)
3

1 0 0 0 0 0 0 W 1 1 0 0 1 reg
OR reg, imm

imm8 or imm16-low imm16-high
1

0 0 0 0 1 0 1 W mod reg mem
OR reg, mem

(disp-low) (disp-high)
2

OR reg, reg' 0 0 0 0 1 0 1 W 1 1 reg reg' 1

OR reg, reg' 0 0 0 0 1 0 0 W 1 1 reg reg' 1

OUT DW, acc 1 1 1 0 1 1 1 W — 6

OUT imm8, acc 1 1 1 0 0 1 1 W imm8 6

OUTM DW, [Seg-spec:]src-block 0 1 1 0 1 1 1 W — 7

POLL 1 0 0 1 1 0 1 1 —
Number of 9 + 9 ×
POLLB pin samplings

1 0 0 0 1 1 1 1 mod 0 0 0 mem
POP mem16

(disp-low) (disp-high)
3

POP PSW 1 0 0 1 1 1 0 1 — 3

POP R 0 1 1 0 0 0 0 1 — 8

POP reg16 0 1 0 1 1 reg — 1

POP reg16 1 0 0 0 1 1 1 1 1 1 0 0 0 reg 1

POP sreg 0 0 0 sreg 1 1 1 — 3

1 1 0 0 1 0 0 0 imm16-lowPREPARE imm16, imm8 (when
imm8 = 0) imm16-high imm8

8

1 1 0 0 1 0 0 0 imm16-lowPREPARE imm16, imm8 (when
imm8 = 1) imm16-high imm8

14

1 1 0 0 1 0 0 0 imm16-lowPREPARE imm16, imm8 (when
imm8 > 1) imm16-high imm8

15 + 4 × imm8

PS: 0 0 1 0 1 1 1 0 — 1

0 1 1 0 1 0 s 0 imm16-low
PUSH imm16

imm16-high —
1

PUSH imm8 0 1 1 0 1 0 s 0 imm8 1

1 1 1 1 1 1 1 1 mod 1 1 0 mem
PUSH mem16

(disp-low) (disp-high)
2

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

81

Table A-1. List of Instruction Execution Clock Counts (8/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

PUSH PSW 1 0 0 1 1 1 0 0 — 2

PUSH R 0 1 1 0 0 0 0 0 — 9

PUSH reg16 0 1 0 1 0 reg — 1

PUSH reg16 1 1 1 1 1 1 1 1 1 1 1 1 0 reg 1

PUSH sreg 0 0 0 sreg 1 1 0 — 2

REP INM 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 W 5 + 6 × rep

REP LDM/LDMB/LDMW 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 W 5 + 6 × rep

REP MOVBK 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 W 5 + 7 × rep

REP OUTM 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 W 5 + 6 × rep

REP STM/STMB/STMW 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 W 5 + 6 × rep

REPE CMPM/CMPMB/CMPMW 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 W 5 + 9 × rep

REPNE CMPM/CMPMB/CMPMW 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 W 5 + 9 × rep

REPNZ
CMPBK/CMPBKB/CMPBKW 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 W 5 + 9 × rep

REPZ
CMPBK/CMPBKB/CMPBKW 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 W 5 + 10 × rep

1 1 0 0 1 0 1 0 pop-value-lowRET pop-value (segment-external

call) pop-value-high —
9

1 1 0 0 0 0 1 0 pop-value-lowRET pop-value (segment-internal

call) pop-value-high —
6

RET (segment-external call) 1 1 0 0 1 0 1 1 — 8

RET (segment-internal call) 1 1 0 0 0 0 1 1 — 6

RETI 1 1 0 0 1 1 1 1 — 10

1 1 0 1 0 0 0 W mod 0 0 0 mem
ROL mem, 1

(disp-low) (disp-high)
3

1 1 0 1 0 0 1 W mod 0 0 0 mem
ROL mem, CL

(disp-low) (disp-high)
5

1 1 0 0 0 0 0 W mod 0 0 0 mem

(disp-low) (disp-high)ROL mem, imm8

imm8 —

5

ROL reg, 1 1 1 0 1 0 0 0 W 1 1 0 0 0 reg 1

ROL reg, CL 1 1 0 1 0 0 1 W 1 1 0 0 0 reg 3

1 1 0 0 0 0 0 W 1 1 0 0 0 reg
ROL reg, imm8

imm8 —
3

1 1 0 1 0 0 0 W mod 0 1 0 mem
ROLC mem, 1

(disp-low) (disp-high)
3

1 1 0 1 0 0 1 W mod 0 1 0 mem
ROLC mem, CL

(disp-low) (disp-high)
5

1 1 0 0 0 0 0 W mod 0 1 0 mem

(disp-low) (disp-high)ROLC mem, imm8

imm8 —

5

ROLC reg, 1 1 1 0 1 0 0 0 W 1 1 0 1 0 reg 1

ROLC reg, CL 1 1 0 1 0 0 1 W 1 1 0 1 0 reg 3

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

82

Table A-1. List of Instruction Execution Clock Counts (9/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

1 1 0 0 0 0 0 W 1 1 0 1 0 reg
ROLC reg, imm8

imm8 —
3

1 1 0 1 0 0 0 W mod 0 0 1 mem
ROR mem, 1

(disp-low) (disp-high)
3

1 1 0 1 0 0 1 W mod 0 0 1 mem
ROR mem, CL

(disp-low) (disp-high)
5

1 1 0 0 0 0 0 W mod 0 0 1 mem

(disp-low) (disp-high)ROR mem, imm8

imm8 —

5

ROR reg, 1 1 1 0 1 0 0 0 W 1 1 0 0 1 reg 1

ROR reg, CL 1 1 0 1 0 0 1 W 1 1 0 0 1 reg 3

1 1 0 0 0 0 0 W 1 1 0 0 1 reg
ROR reg, imm8

imm8 —
3

1 1 0 1 0 0 0 W mod 0 1 1 mem
RORC mem, 1

(disp-low) (disp-high)
3

1 1 0 1 0 0 1 W mod 0 1 1 mem
RORC mem, CL

(disp-low) (disp-high)
5

1 1 0 0 0 0 0 W mod 0 1 1 mem

(disp-low) (disp-high)RORC mem, imm8

imm8 —

5

RORC reg, 1 1 1 0 1 0 0 0 W 1 1 0 1 1 reg 1

RORC reg, CL 1 1 0 1 0 0 1 W 1 1 0 1 1 reg 3

1 1 0 0 0 0 0 W 1 1 0 1 1 reg
RORC reg, imm8

imm8 —
3

SET1 CY 1 1 1 1 1 0 0 1 — 4

SET1 DIR 1 1 1 1 1 1 0 1 — 4

1 1 0 1 0 0 0 W mod 1 0 0 mem
SHL mem, 1

(disp-low) (disp-high)
3

1 1 0 1 0 0 1 W mod 1 0 0 mem
SHL mem, CL

(disp-low) (disp-high)
5

1 1 0 0 0 0 0 W mod 1 0 0 mem

(disp-low) (disp-high)SHL mem, imm8

imm8 —

5

SHL reg, 1 1 1 0 1 0 0 0 W 1 1 1 0 0 reg 1

SHL reg, CL 1 1 0 1 0 0 1 W 1 1 1 0 0 reg 3

1 1 0 0 0 0 0 W 1 1 1 0 0 reg
SHL reg, imm8

imm8 —
3

1 1 0 1 0 0 0 W mod 1 0 1 mem
SHR mem, 1

(disp-low) (disp-high)
3

1 1 0 1 0 0 1 W mod 1 0 1 mem
SHR mem, CL

(disp-low) (disp-high)
5

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

83

Table A-1. List of Instruction Execution Clock Counts (10/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

1 1 0 0 0 0 0 W mod 1 0 1 mem

(disp-low) (disp-high)SHR mem, imm8

imm8 —

5

SHR reg, 1 1 1 0 1 0 0 0 W 1 1 1 0 1 reg 1

SHR reg, CL 1 1 0 1 0 0 1 W 1 1 1 0 1 reg 3

1 1 0 0 0 0 0 W 1 1 1 0 1 reg
SHR reg, imm8

imm8 —
3

1 1 0 1 0 0 0 W mod 1 1 1 mem
SHRA mem, 1

(disp-low) (disp-high)
3

1 1 0 1 0 0 1 W mod 1 1 1 mem
SHRA mem, CL

(disp-low) (disp-high)
5

1 1 0 0 0 0 0 W mod 1 1 1 mem

(disp-low) (disp-high)SHRA mem, imm8

imm8 —

5

SHRA reg, 1 1 1 0 1 0 0 0 W 1 1 1 1 1 reg 1

SHRA reg, CL 1 1 0 1 0 0 1 W 1 1 1 1 1 reg 3

1 1 0 0 0 0 0 W 1 1 1 1 1 reg
SHRA reg, imm8

imm8 —
3

SS: 0 0 1 1 0 1 1 0 — 1

STM [DS1-spec:]dst-block 1 0 1 0 1 0 1 W — 3

STMB 1 0 1 0 1 0 1 W — 3

STMW 1 0 1 0 1 0 1 W — 3

0 0 1 0 1 1 0 W imm8 or imm16-low
SUB acc, imm

imm16-high —
1

1 0 0 0 0 0 s W mod 1 0 1 mem

(disp-low) (disp-high)SUB mem, imm

imm8 or imm16-low imm16-lhigh

3

0 0 1 0 1 0 0 W mod reg mem
SUB mem, reg

(disp-low) (disp-high)
3

1 0 0 0 0 0 s W 1 1 1 0 1 reg
SUB reg, imm

imm8 or imm16-low imm16-high
1

0 0 1 0 1 0 1 W mod reg mem
SUB reg, mem

(disp-low) (disp-high)
2

SUB reg, reg' 0 0 1 0 1 0 1 W 1 1 reg reg' 1

SUB reg, reg' 0 0 1 0 1 0 0 W 1 1 reg reg' 1

0 0 0 1 1 1 0 W imm8 or imm16-low
SUBC acc, imm

imm16-high —
1

1 0 0 0 0 0 s W mod 0 1 1 mem

(disp-low) (disp-high)SUBC mem, imm

imm8 or imm16-low imm16-lhigh

3

APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS

84

Table A-1. List of Instruction Execution Clock Counts (11/11)

Operation Code
Mnemonic, Operand

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Clocks

0 0 0 1 1 0 0 W mod reg mem
SUBC mem, reg

(disp-low) (disp-high)
3

1 0 0 0 0 0 s W 1 1 0 1 1 reg
SUBC reg, imm

imm8 or imm16-low imm16-high
1

0 0 0 1 1 0 1 W mod reg mem
SUBC reg, mem

(disp-low) (disp-high)
2

SUBC reg, reg' 0 0 0 1 1 0 1 W 1 1 reg reg' 1

SUBC reg, reg' 0 0 0 1 1 0 0 W 1 1 reg reg' 1

1 0 1 0 1 0 0 W imm8 or imm16-low
TEST acc, imm

imm16-high —
1

1 1 1 1 0 1 1 W mod 0 0 0 mem

(disp-low) (disp-high)TEST mem, imm

imm8 or imm16-low imm16-lhigh

2

1 0 0 0 0 1 0 W mod reg mem
TEST mem,reg

(disp-low) (disp-high)
2

1 1 1 1 0 1 1 W 1 1 0 0 0 reg
TEST reg, imm

imm8 or imm16-low imm16-high
1

1 0 0 0 0 1 0 W mod reg mem
TEST reg, mem

(disp-low) (disp-high)
2

TEST reg, reg' 1 0 0 0 0 1 0 W 1 1 reg reg' 1

TRANS 1 1 0 1 0 1 1 1 — 5

TRANS src-table 1 1 0 1 0 1 1 1 — 5

TRANSB 1 1 0 1 0 1 1 1 — 5

XCH AW, reg16 1 0 0 1 0 reg — 3

1 0 0 0 0 1 1 W mod reg mem
XCH mem, reg

(disp-low) (disp-high)
5

1 0 0 0 0 1 1 W mod reg mem
XCH reg, mem

(disp-low) (disp-high)
5

XCH reg, reg' 1 0 0 0 0 1 1 W 1 1 reg reg' 3

XCH reg16, AW 1 0 0 1 0 reg — 3

0 0 1 1 0 1 0 W imm8 or imm16-low
XOR acc, imm

imm16-high —
1

1 0 0 0 0 0 0 W mod 1 1 0 mem

(disp-low) (disp-high)XOR mem, imm

imm8 or imm16-low imm16-lhigh

3

0 0 1 1 0 0 0 W mod reg mem
XOR mem, reg

(disp-low) (disp-high)
3

1 0 0 0 0 0 0 W 1 1 1 1 0 reg
XOR reg, imm

imm8 or imm16-low imm16-high
1

0 0 1 1 0 0 1 W mod reg mem
XOR reg, mem

(disp-low) (disp-high)
2

XOR reg, reg' 0 0 1 1 0 0 1 W 1 1 reg reg' 1

XOR reg, reg' 0 0 1 1 0 0 0 W 1 1 reg reg' 1

85

APPENDIX B INDEX

[A]

A19 to A0... 19

AC.. 28

Addressing Mode... 42

Addressing with based index................................... 45

AH.. 25

AL .. 25

Auxiliary carry flag ... 28

AW... 25

[B]

Based addressing.. 45

BH.. 25

BL .. 25

BP.. 25

Break flag .. 29

BRK ... 29

BS3 to BS0 .. 19

BUNRI ... 22

BUS CONTROL FUNCTIONS................................. 47

Bus Hold Function ... 54

BUSLOCKB ... 20

BW... 25

[C]

Carry flag ... 27

CH ... 25

CL.. 25

CLK.. 21

Control flag .. 26

CPU FUNCTIONS ... 25

CW... 25

CY.. 27

[D]

Data address ... 43

Data segment 0 ... 37

Data segment 1 ... 37

Description of Pin Statuses 19

DH ... 25

DI15 to DI0 .. 19

Differences between V30MZ and V30 HL, V30MX.. 14

DIR .. 29

Direct addressing... 42, 44

Direction flag ..29

DL ..25

DO15 to DO0 ...19

Double word data configuration32

DS0 ..25

DS1 ..25

DW ...25

Dynamic relocation ..37

[E]

Effective Address ...39

[F]

Format of object code ..41

[G]

General-purpose registers25

[H]

Handling of Unused Pins ...23

Hardware Interrupt ...58

HLDAK ...21

HLDRQ...20

[I]

IE..29

Immediate addressing..43

Indexed addressing..45

Index register ...30

Initial Value of Registers after Reset........................69

Instruction address...42

Instruction Prefetch ..33

Instruction Set ..40

INT ...21

Interface between V30MZ and I/O 49

Interface between V30MZ and Memory47

Interrupt Acknowledge Cycle59

Interrupt enable flag ...29

INTERRUPT FUNCTIONS.......................................55

Interrupt Servicing in Execution of Block Processing

Instruction ..62

Interrupt Vector Table Configuration........................56

I/O addressing..43

I/O Map ..32

I/O space..32

APPENDIX B INDEX

86

IX ... 30

IY ... 30

[L]

LIST OF INSTRUCTION EXECUTION CLOCK

COUNTS.. 73

Logical Address ... 34

[M]

Maskable interrupt ... 58

MD ... 29

Memory Address Calculation................................... 39

Memory addressing ... 44

Memory indirect addressing..................................... 42

Memory Map.. 31

Memory space ... 31

Mode flag ... 29

[N]

NMI .. 21

Non-maskable interrupt (NMI).................................. 58

Non-memory addressing ... 43

Normal Mode ... 72

[O]

Overflow flag.. 28

[P]

P .. 27

Parity flag... 27

PC.. 26

PC relative addressing... 42

Physical Address ... 34

PIN FUNCTIONS... 17

Pin List ... 17

Pin Statuses... 18

Pointer ... 25

POLLB ... 20

Program counter .. 26

Program segment .. 37

Program status word.. 26

PS.. 25

PSW... 26

[R]

Read Timing of Memory and I/O.............................. 50

READYB...20

Register addressing ...43

Register Configuration..25

Register indirect addressing...............................42, 44

Release of Standby Mode..66

RESET ...20

RESET FUNCTIONS...69

[S]

S...28

Segment configuration ...35

Segment registers ..25

Segment system...34

Setting of Standby Mode..65

Sign flag ...28

Software Interrupts ...60

SP...25

SS...25

Stack segment..37

STANDBY FUNCTIONS...65

Standby Mode ..65

Standby test mode ...72

Status flag ..26

Status of Output Pin after Reset...............................69

Symbol Diagram...13

[T]

TBI22 to TBI0 ...22, 71

TBO42 to TBO0..22, 71

TEST ..22

Test bus pins..71

TEST FUNCTIONS ...71

Timing at which Interrupt is Not Acknowledged61

[U]

UBEB..19

Unit test mode ..72

[V]

V...28

[W]

Word data configuration ...32

Write Timing of Memory and I/O52

APPENDIX B INDEX

87

[Z]

Z .. 28

Zero flag .. 28

88

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: +886-2-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Market Communication Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 01.11

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	INTRODUCTION
	CHAPTER 1 GENERAL DESCRIPTION
	1.1 Features
	1.2 Symbol Diagram
	1.3 Differences between V30MZ and V30HL, V30MX

	CHAPTER 2 PIN FUNCTIONS
	2.1 Pin List
	2.2 Pin Statuses
	2.3 Description of Pin Statuses
	2.3.1 Normal pins
	2.3.2 Test Pins
	2.3.3 Reserved pins

	2.4 Handling of Unused Pins

	CHAPTER 3 CPU FUNCTIONS
	3.1 Register Configuration
	3.1.1 General-purpose registers (AW, BW, CW, DW)
	3.1.2 Segment registers (PS, SS, DS0, DS1)
	3.1.3 Pointer (SP, BP)
	3.1.4 Program counter (PC)
	3.1.5 Program status word (PSW)
	3.1.6 Index register (IX, IY)

	3.2 Address Space
	3.2.1 Memory space
	3.2.2 I/O space

	3.3 Instruction Prefetch
	3.4 Logical Address and Physical Address
	3.4.1 Segment system
	3.4.2 Segment configuration
	3.4.3 Dynamic relocation

	3.5 Effective Address
	3.6 Instruction Set
	3.6.1 List of instruction sets by function
	3.6.2 Format of object code

	3.7 Addressing Mode
	3.7.1 Instruction address
	3.7.2 Data address

	CHAPTER 4 BUS CONTROL FUNCTIONS
	4.1 Interface between V30MZ and Memory
	4.1.1 Cautions on accessing word data

	4.2 Interface between V30MZ and I/O
	4.3 Read/Write Timing of Memory and I/O
	4.3.1 Read timing of memory and I/O
	4.3.2 Write timing of memory and I/O

	4.4 Bus Hold Function

	CHAPTER 5 INTERRUPT FUNCTIONS
	5.1 Hardware Interrupt
	5.1.1 Non-maskable interrupt (NMI)
	5.1.2 Maskable interrupt (INT)

	5.2 Software Interrupts
	5.3 Timing at which Interrupt is Not Acknowledged
	5.4 Interrupt Servicing in Execution of Block Processing Instruction

	CHAPTER 6 STANDBY FUNCTIONS
	6.1 Setting of Standby Mode
	6.2 Standby Mode
	6.3 Release of Standby Mode
	6.3.1 Release by hardware interrupt request
	6.3.2 Release by RESET input

	CHAPTER 7 RESET FUNCTIONS
	CHAPTER 8 TEST FUNCTIONS
	8.1 Test Pins
	8.1.1 Test bus pins (TBI22 to TBI0, TBO42 to TBO0)
	8.1.2 BUNRI, TEST pins

	8.2 Normal Mode
	8.3 Unit Test Mode and Standby Test Mode
	8.3.1 Unit test mode
	8.3.2 Standby test mode

	APPENDIX A LIST OF INSTRUCTION EXECUTION CLOCK COUNTS
	APPENDIX B INDEX

