SM8521 CONTENTS

DESCRIPTION2
FEATURES 2
PIN CONNECTIONS 3
BLOCK DIAGRAM4
PIN DESCRIPTION5
ABSOLUTE MAXIMUM RATINGS 6
RECOMMENDED OPERATING CONDITIONS 6
DC CHARACTERISTICS7
SM85CPU8
Register Lineup
Address Space
ROM Area
Register File Area
RAM Area
Data Format
Bus Timing
SYSTEM CONTROL18
Oscillator Circuit
Clock System
Memory Map
Hardware Reset
Interrupt Function
Standby Function
I/O PORTS29
TIMER/COUNTERS 30
Clock Timer
Watchdog Timer Register (WDT)
LCDC/DMA 33
VRAM Configuration
DMA Transfer
Compound and Overwrite Mode
Registers
SOUND GENERATOR 41
Sound Waveform Register
Registers
MMU45
UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER (UART) INTERFACE47
UART Transmit Data Register (URTT)
UART Receive Data Register (URTR)
UART Status Register (URTS)
UART Control Register (URTC)
Transfer Format

INSTRUCTION SET 5	51
Definition of Symbols	
Instruction Summary	
Addressing Mode	
SYSTEM CONFIGURATION EXAMPLE 5	55

SM8521

DESCRIPTION

The SM8521 is a CMOS 8-bit single-chip microcomputer containing SM85CPU core and the required peripheral functions for dot matrix LCD display system. SM85CPU is an 8-bit High performance CPU with various addressing modes and High-efficiency instruction sets. SM85CPU is featured by allocating general registers on RAM to reduce overhead when calling subroutines.

The peripheral functions and memory of SM8521 contain ROM, RAM, MMU, LCD controller, DMA, sound generator, timer, serial interface (UART) and PIO.

FEATURES

• ROM capacity: 4 096 x 8 bits RAM capacity: 1 024 x 8 bits

External memory expansion

· A RAM area is used as subroutine stack

· CPU core :

- 8 bits x 8 ports (or 16 bits x 4 ports) and 16 bits x 4 ports general purpose register are used as accumulator, register pointer, and register index.
- Instruction sets (multiplication/division/bit manipulation instruction)
- Addressing mode 23 types
- System clock cycle 0.2 µs (MIN.) at 10 MHz main clock cycle
- · System clock is variable by software (system clock can be optioned to 1/2, 1/4, 1/8, 1/16, 1/32 of main-clock and 1/2 of sub-clock.)
- Built-in main clock oscillator for system clock
- · Built-in sub clock oscillator for real time clock
- Interrupts :

Non-maskable interrupts x 2 Maskable interrupts x 8

Standby modes: Halt mode/Stop mode

8-Bit Single-Chip Microcomputer (Controller For Hand-Held Equipment)

• I/O ports : Input/output

• Timer :

8 bits x 2 (with 8 bits prescaller) Clock timer x 1 (1 s or 1 min) Watchdog timer

• MMU :

In each 8 k-byte unit, external memory can be expanded up to MAX. 2 M bytes.

• LCD controller :

Display size 160 x 100 dots

> 160 x 160 dots 160 x 200 dots 200 x 100 dots 200 x 160 dots

black & white 4 gradations

(interframe elimination)

VRAM 160 x 200 dot x 2 phases or

200 x 160 dot x 2 phases

(required externally)

• DMA :

Transmission mode: ROM to VRAM,

VRAM to VRAM,

Extend RAM to VRAM,

VRAM to Extend RAM

Transmission data: Rectangle (Arbitrary size)

· Sound generator :

Arbitrary waveform x 2 (16-level tone, 32step/1-period waveform output)

Noise x 1 channel

• PIO :

I/O 8-bit x 4

(In each 2 bits, I/O, pull-up and open-drain can be set.)

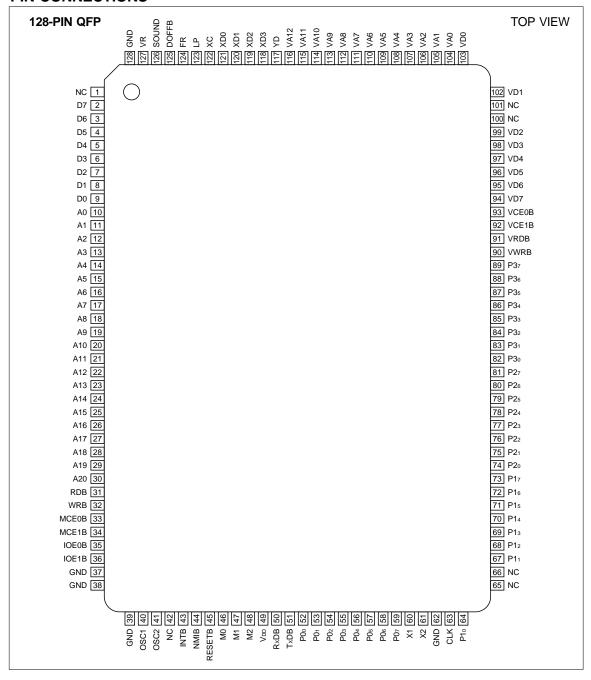
IR carrier generator built-in.

• UART:

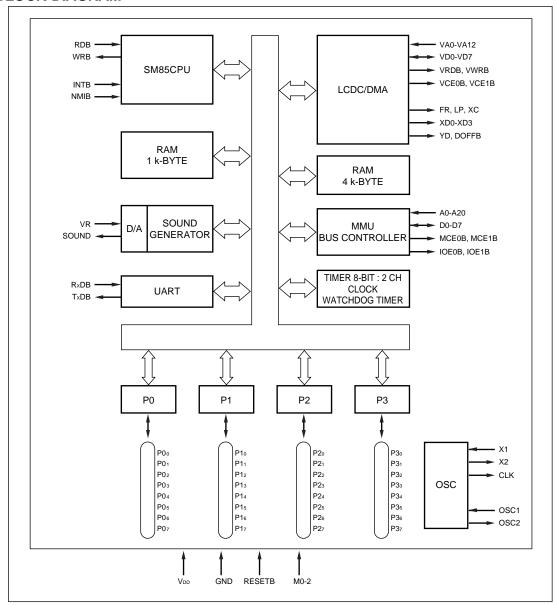
1 channel

Baud rate: Timer 0 output only (Timer 0 output/32)

Serial interface :
 UART


8-bit clock asynchronous x 1

• Supply voltage : 4.5 to 5.5 V


• Packages: 128-pin QFP (QFP128-P-1420)

Clock output

PIN CONNECTIONS

BLOCK DIAGRAM

PIN DESCRIPTION

PIN NAME	I/O	FUNCTION	
D0-D7	I/O	External data bus	
A0-A20	0	External address bus	
MCE0B	0	Chip enable 0 (Mask ROM/flash memory)	
MCE1B	0	Chip enable 1 (SRAM)	
IOE0B	0	I/O enable 0 (address : FF00-FFFF)	
IOE1B	0	I/O enable 1 (address : FF00-FFFF)	
RDB	0	Read strobe	
WRB	0	Write strobe	
NMIB	1	Non-maskable interrupt	
INTB	1	External interrupt	
VD0-7	I/O	VRAM data bus	
VA0-12	0	VRAM address bus	
VCE0B	0	VRAM chip enable 0 (A000-BFFF)	
VCE1B	0	VRAM chip enable 1(C000-DFFF)	
VRDB	0	VRAM read strobe	
VWRB	0	VRAM write strobe	
P0 ₀ -P0 ₇	I/O	I/O port 0	
P10-P17	I/O	I/O port 1	
P2 ₀ -P2 ₇	I/O	I/O port 2	
P3 ₀ -P3 ₇	I/O	I/O port 3	
RxDB	I	UART data input port	
TxDB	0	UART data output port	
SOUND	0	Sound output	
VR	I	D/A converter reference voltage	
FR	0	LCD drive waveform	
LP	0	Display data latch pulse	
XC	0	Display data clock	
XD0-XD3	0	Diaplay data	
YD	0	Vertical timing	
DOFFB	0	Display off	
X1	I	Main clock input	
X2	0	Main clock output	
CLK	0	System clock output	
OSC1	I	Subclock input	
OSC2	0	Subclock output	
RESETB	I	Reset	
M0-M2	I	Operation Mode (usually GND)	
Vcc, GND	I	Power supply	

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITION	RATING	UNIT
Supply voltage	V _{DD}		-0.3 to 6.5	V
Input voltage	Vı		-0.3 to V _{DD} + 0.5	V
Output voltage	Vo		-0.3 to V _{DD} + 0.5	V
Output current	Іон	High-level output current	4	mA
Output current	loL	Low-level output current	4	mA
Operating temperature	Topr		-10 to +60	°C
Store temperature	Тѕтс		-40 to +140	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITION	RATING	UNIT
Supply voltage	V _{DD}		4.5 to 5.5	V
System clock frequency	f sys	V _{DD} = 4.5 to 5.5 V	16.384 k to 5 M	Hz
Maximum main clock frequency	fск	V _{DD} = 4.5 to 5.5 V	10	MHz
Subclock frequency	fsuв	V _{DD} = 2.7 to 5.5 V	32.768	kHz
Operating temperature	Topr		-10 to +60	°C

NOTE:

Be sure to RESETB when power on because internal signal reguires initialization. Normal operation is not guaranteed without hardware reset.

DC CHARACTERISTICS

 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{OPR} = -10 \text{ to } +60^{\circ}\text{C})$

PARA	METER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	NOTE		
	V _{IH1}			V _{IH1}		0.8 x V _{DD}		V _{DD}	V	1
Input,	voltago	V _{IL1}		0		0.2 x V _{DD}	V	V 1		
Input	/oltage	V _{IH2}		V _{DD} - 0.5			V	2		
		V _{IL2}				0.5	V			
		l _{IH1}	VIN = VDD, VDD = 5 V			10		3		
Input o	current	I _{IL1}	V _{IH} = 0 V, V _{DD} = 5 V			-10	μA	, s		
		I _{IL2}	V _{IN} = 0 V, V _{DD} = 5 V	-40	-75	-150	μA	4		
Output	VoH1		lон1 = −1 mA, V _{DD} = 5 V	V _{DD} - 0.5			V 5	5		
Output voltage V		V _{OL1}	IoL1 = 10 mA, VDD = 5 V			0.5	V	5		
Resolution		on	VR = V _{DD} = 5 V		8		bits			
D/A	Output r	esistance	VR = V _{DD} = 5 V			10	kΩ	6		
	Combined tolerance		VR = V _{DD} = 5 V		± 0.05	± 0.10	V			
	IDD		fsys = 5 MHz		30	45	mΛ	7		
Supply current		Іррн	fsys = 5 MHz, HALT mode		15	18	mA	8		
Juppiy	Current	I _{DDS1}	fsub oscillation, STOP mode		30	70	μA	9		
		I _{DDS2}	fsuв stop, STOP mode		1	6	μA	10		

NOTES:

- Applicable pins: P0o-P07, P1o-P17, P2o-P27, P3o-P37, D0-D7, VD0-VD7, X1, M0-M2
- 2. Applicable pins: RESETB, OSC1, RxDB, NMIB, INTB

pull-up resistor)

- 4. Applicable pins: RESETB, P0₀-P0₇, P1₀-P1₇, P2₀-P2₇, P3₀-P3₇ (connected pull-resistor)

D7, A0-A20, MCE0B, MCE1B, IOE0B, IOE1B, RDB, WRB, VA0-VA12, VCE0B, VCE1B, VWRB, TxDB, XC, LP, FR,

CLK, XD0-XD3

6. No load condition, $V_{DD} = 5 \text{ V}$, main clock = 10 MHz

- 7. No load condition, $V_{DD} = 5$ V, sub clock in active (32.768 kHz), VR = GND, input signal fixation.
- No load condition, V_{DD} = 5 V, sub clock in active (32.768 kHz), VR = GND, input signal fixation.
 Including LCD, DMA, sound generator and any part concerned with timer operation.
- No load condition, V_{DD} = 5 V, sub clock in active (32.768 kHz), VR = GND, input signal fixation.
- No load condition, V_{DD} = 5 V, OSC1 = GND, VR = GND, input signal fixation.

SM85CPU

The SM85CPU is an 8-bit CPU with an unique architecture, developed by SHARP, and the following features.

General purpose register architectures

 There are eight 8-bit general purpose registers (also serve as four 16-bit general purpose registers) and four 16-bit general purpose registers serve as accumulator, index register, or the pointer registers.

General purpose register allocated at RAM

 The general purpose registers access the RAM location by the register pointer RP. So pushing the register during an interrupt and passing parameter to subroutine can be executed in High speed.

Refined instruction set

- The instruction set contains total 67 members: 8 load instructions, 19 arithmetic instructions, 7 logic instructions, 9 program control (branch) instruction, 8 bit manipulation instructions, 8 rotate & shift instructions and 9 CPU control instructions.
- There are powerful bit manipulation instructions includes plural bits transfer, logical operation between bits, and the bit test and jump instructions that incorporates a test and condition branch in the same instruction. (Refer to Table 1)

- There are data transfer, arithmetic and conditional branch instructions for 16-bit. It can rapidly process the word-sized and long jump.
- There are 8-bit x 8-bit→16-bit multiplication and 16-bit x 16-bit→16-bit remaining 8-bit division instructions. (Unsigned arithmetic)

23 address modes

 The rich address modes provides optimal access to ROM, RAM and the register files.

Illegal instruction detecting function

 When an error code is detected, a non-maskable interrupt (NMI) will be generated.

Standby function

 There are two standby modes, HALT and STOP mode, and the mode can be changed by HALT instruction or STOP instruction respectively.

Table 1 Instruction summary

TYPE	INSTRUCTION	NUMBER
Load instruction	CLR, MOV, MOVM, MOVW, POP, POPW, PUSH, PUSHW	8
Arithmetic instruction	ADC, ADCW, ADD, ADDW, CMP, CMPW, DA, DEC, DECW, DIV,	19
Antimetic instruction	EXTS, INC, INCW, MULT, NEG, SBC, SBCW, SUB, SUBW	19
Logic instruction	AND, ANDW, COM, OR, ORW, XOR, XORW	7
Program control instruction	BBC, BBS, BR, CALL, CALS, DBNZ, IRET, JMP, RET	9
Bit manipulation instruction	BAND, BCLR, BCMP, BMOV, BOR, BTST, BSET, BXOR	8
Rotate & shift instruction	RL, RLC, RR, RRC, SLL, SRA, SRL, SWAP	8
CPU control instruction	COMC, CLRC, DI, EI, HALT, NOP, SETC, STOP	8

Total 67

Table 2 Addressing Mode Summary

NAME	SYMBOL	Range	Operand *1		
Implied			To specify the carry(C) and interrupt enable		
Implied			(I) in the instruction code.		
Register	r	r = R0-R7	General register [byte]		
Register pair	rr	r = RR0, RR2,, RR14	General register [word]		
Register file	R	R = 0 to 255 (R0-R15)	Register file (0000H-007FH) and (0080H-00FFH)		
Tregister file		N = 0 to 255 (NO-N 15)	[byte]		
Register file pair	RR	R = 0, 2, 254	Register file (0000 _H -007F _H) and (0080H-00FF _H)		
rtegister file pail	IXIX	(RR0, RR2,, RR14)	[byte]		
Register indirect	@r	r = R0-R7	Memory (0000н-00FFн) [byte]		
Register indirect	(r)+	r = R0-R7	Memory (0000н-00FFн) [byte]		
auto increment	(1)+	1 = 100-107	Wellioty (0000H-001 Fil) [byte]		
Register indirect	—(r)	r = R0-R7	Memory (0000н-00FFн) [byte]		
auto decrement		1 = 100-107	Wellioly (0000H-001 Fil) [byte]		
Register index	n(r)*2	n = 00н-FFн, r = R1-R7	Memory (0000н-00FFн) [byte]		
Register pair indirect	@rr	rr = RR0, RR2, , RR14	Memory (0000н-FFFFн) [word/byte]		
Register pair indirect	(rr)+	rr = RR0, RR2, , RR14	Memory (0000н-FFFFн) [word/byte]		
auto increment	(11)1	11 - 1010, 1012,, 10114	Wellery (Goodin't i i ii) [Weller Byte]		
Register pair indirect	–(rr)	rr = RR0, RR2, , RR14	Memory (0000н-FFFFн) [word/byte]		
auto decrement	(,	, rate,, rater	[Wordsyte]		
Register pair index	nn(rr)*3	nn = 0000н-FFFFн	Memory (0000н-FFFFн) [word/byte]		
rtogistor pair iridox	(,	rr = RR2, RR4,, RR14	[Word/Byte]		
Index indirect	@nn(r)*2	nn = 0000н-FFFFн	Memory (0000н-FFFFн) [word]		
		r = R1-R7	e.i.e.iy (coco.i. i i i i i j [ii.e.a]		
Immediate	IM	IM = 00 _H -FF _H	The immediate data in the instruction code [byte]		
Immediate long	IML	IML = 0000 _H -FFFF _H	The immediate data in the instruction code [word]		
			Register file (0000 _H -007F _H) and memory		
Bit	b	b = 0 to 7	(0080н-00FFн, FF00н-FFFFн) [bit] (1 bit of 1 byte		
			pointed by R, n(r) and DAp)		
Port	р		Register file (0010 _H -0017 _H) [byte]		
Relative	RA	PC - 128 to PC + 127	Program memory (1000н-FFFFн)		
Direct	DA	DA = 0000 _H -FFFF _H	Memory (0000н-FFFFн) [byte]		
Direct short	DAs	DAs = 1000 _H -1FFF _H	Program memory (1000н-1FFFн)		
Direct special page	DAp	DAp = FF00 _H -FFFF _H	Program memory (FF00н-FFFFн) [byte]		
Direct indirect	@DA	DA = 0000 _H -FFFF _H	Memory (0000н-FFFFн)		

^{*1} The data indicated by [] is the unit of possible to use in Load and Arithmetic Instructions.

^{*2} R0 can not be used.

^{*3} RR0 can not be used.

Register Lineup

Fig. 1 shows the SM85CPU register lineup. The CPU internal register consists of eight 8-bit general purpose registers (R0-R7), four 16-bit general purpose registers

(RR8-RR14), a program counter (PC) and four other control registers. (The R0-R7 can be also used as four 16-bit general purpose registers (RR8-RR14).)

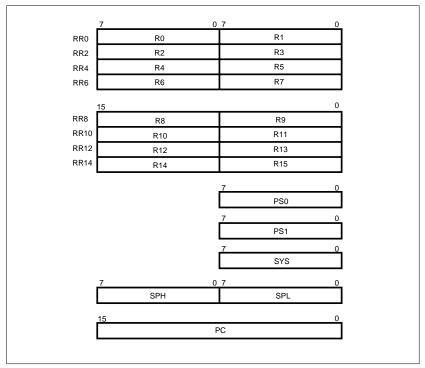


Fig. 1 Register Lineup

GENERAL PURPOSE REGISTER

The eight 8-bit general purpose registers R0-R7 and all eight 16-bit general purpose registers (RR0-RR14) are available for use as accumulator, index register and pointer registers. (The R0 and RR0 cannot be used as index register)

The other eight 8-bit registers R8-R15 cannot be used as 8-bit general purpose register and as member of the register file. (about register file, refer to "Address Space.")

The feature of the SM85CPU architecture is that general purpose registers are virtually allocated at 16-byte internal RAM. Actually, if the CPU accesses general purpose registers, the designated RAM will be accessed by the 5-bit register pointer (RP)*. When RP = 00000B, the registers occupy the first

16 bytes starting at 0000_H. Incrementing the field, RP = 00001B, shifts the mapping by eight bytes so that the registers start at 0008_H. As a result, the general purpose registers can be switched in 8-byte unit to any RAM location within 0000_H-00FF_H.

Although the general purpose registers are members of the register file, which stores the data onto actual RAM, is different from the other members (control registers).

That is, general purpose registers can be referred as registers, as register file (allocated at 0000H-000FH) and as RAM accessing by all addressing modes.

 About register pointer (RP), refer to "Processor status 0 (PS0)".

CPU CONTROL REGISTER

The SM85CPU has the following control register: processor status PS0, processor status PS1, system configuration register SYS, stack pointer SPH, SPL and program counter PC. All control register except the program counter PC are members of the register file and accessible by the register file R and the register file pair RR addressing modes.

Processor status 0 (PS0)

The processor status PS0 is an 8-bit readable/writable register containing 2 fields, the upper 5-bit is register pointer (RP) and the lower 3-bit is interrupt mask.

Bit 7	7							0
	PR4	PR3	PR2	PR1	PR0	IM2	IM1	IM0

Bits 7 to 3: Register pointer (RP)

This gives, in 8 bytes unit, the starting address in RAM for general purpose registers.

Bits 2 to 0 : Interrupt mask bits (IM)

BIT	CONTENT
000	All maskable interrupts recognized
001	All maskable interrupts recognized
010	Maskable interrupts with level 1 to 12 recognized
011	Maskable interrupts with level 1 to 10 recognized
100	Maskable interrupts with level 1 to 8 recognized
101	Maskable interrupts with level 1 to 6 recognized
111	Maskable interrupts with level 1 tto 4 recognized
111	Maskable interrupts with level 1 to 2 recognized

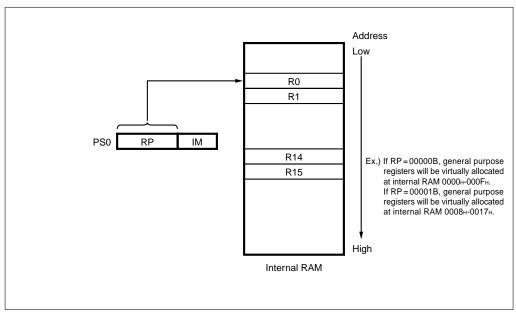


Fig. 2 Register Pointer (RP) Setting Example

Processor status 1 (PS1)

The processor status PS1 is an 8-bit readable/writable register and consists of eight flag bits. These flags can be used as the condition codes for the conditional branch instructions. When CPU generates an interrupt, the content of processor status PS1 and the value of program counter PC automatically are pushed onto stack.

Bit 7 0
C Z S V D H B I

Bit 7: Carry (C)

It indicates that generated a carry in operation.

Bit 6: Zero (Z)

It indicates that the operation result is zero.

Bit 5: Sign (S)

It indicates that the operation result is negative (Sign bit = '1').

Bit 4: Overflow (V)

Executes the operation with the signed value. If the operation result cannot indicate complement on two, then the bit will be '1'.

Bit 3: Decimal adjustment (D)

It indicates that the last arithmetic operation is a subtraction.

Bit 2: Half carry (H)

It indicates that generated a carry between bit 3 and 4.

Bit 1 : Bit (B)

It indicates that the result of the last bit manipulation.

Bit 0: Interrupt enable (I)

This is a flag which enables/disables all maskable interrupt.

System configuration register (SYS)

The system configuration register SYS is an 8-bit readable/writable register which sets the external memory expansion modes and selects 8-bit/16-bit stack pointer.

Bit 7 0
- | SPC | - | - | MCNF2 | MCNF1 | MCNF0

Bit 7 : Sets '0'

Bit 6: Stack pointer configuration (SPC)

BIT	CONTENT
0	8-bit (SPL only)
1	16-bit (both SPL, SPH)

Bits 5 to 3 : Set '0'

Bits 2 to 0: Memory configuration (MCNF2-0)

BIT	CONTENT
000	External memory expansion disable.
110	External memory expansion mode (64 k bytes*)
Other combination	Do not use.

*: In ROM space (60 k bytes), the field beyond the internal ROM is the external memory access field.

Stack pointer (SPL, SPH)

The stack pointer SPL, SPH are 8-bit readable/ writable register and show the stack address. The bit SPC of the system configuration (SYS) specifies whether the stack pointer is 8 (SPL only) or 16 (both SPL and SPH) bits long.

Program counter (PC)

The program counter (PC) is a pointer for program memory and contains the starting address for the next instruction.

В	it 15	,							0

The program counter PC is initialized to 1020_{H} after hardware reset. That is, the application program starts executing from the address 1020_{H} after hardware reset.

Address Space

The SM85CPU has a 64 k-byte address space, which is divided into RAM (0000H-0FFFH) and ROM (1000H-FFFFH) areas. The address 0000H-007FH are both shared by RAM and register file. Fig. 9-1 shows the SM8521 Memory Map.

The RAM and register file allocated at 0000H-007FH can be selected by the addressing mode designated by instructions.

The SM8521 supports an Memory Management Unit used to external memory area expantion. Refer to "Memory Management Unit (MMU)".

ROM Area

ROM area starts at the address 1000_H of the space address. The first portion (1000_H-101F_H) is reserved for the interrupt vector table. Each 2 bytes entry in the vector table contains the address of interrupts. When an interrupt encountered, the CPU jumps to the corresponding branch address of vector table for program executing. The address 1020_H marks the start of the user program area itself. Executing always starts at 1020_H after hardware reset.

Register File Area

The register file is allocated between 0000_H and 007F_H. The first 16 bytes (0000_H-000F_H) area are general registers. The remainder is for CPU control registers, peripherals control register and data register.

RAM Area

The RAM area starts at the beginning $0000_{\rm H}$ of the address space. It overlaps the register file for the address $0000_{\rm H}\text{-}007F_{\rm H}$.

This arrangement is to shorten the instruction length as much as possible and to permit the use with both RAM and the register file for faster execution.

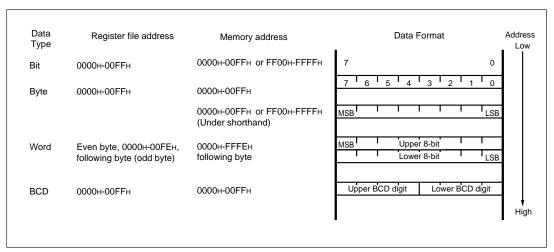


Fig. 3 Register File/Memory Data Formats

Data Format

The SM85CPU supports four data types: bit, 4-bit BCD, byte, and word data.

REGISTER FILE DATA FORMATS

The register file (0000H-007FH) and RAM (0080H-00FFH) accessible with register file R and register file pair RR addressing support processing for all 4 data types: bit, 4-bit BCD, byte, and word data. Fig. 3 shows the data layout in the register file.

• Bit data (register file)

Bit manipulation instructions access bit data in the register by register file R addressing, which gives the byte address in the register file (0000_H-007F_H), or RAM (0080_H-00FF_H), and the operand b, which gives the bit number within the byte.

Byte data (register file)

Instructions access the byte data in the register file by register file R addressing, which gives the byte data address in the register file (0000_H-007F_H) or RAM (0080_H-00FF_H).

• Word data (register file)

Instructions access word data in the register file by register file pair RR addressing, which gives the word address, even and 2 bytes address, in the register file (0000H-007FH) or RAM (0080H-00FFH). The address must be even (0, 2, 4,..., 254). Specifying an odd address leads to unreliable results.

• BCD data (register file)

The decimal adjust instruction (DA), used to adjust BCD digits after an odd or subtraction, accesses a BCD data byte in the register file by register file R addressing.

· Notice for the general register on register file

The general registers are the first 16 bytes (0000H-000FH) in the register file. They can be accessed as byte-sized by register file R addressing and as word-sized by register file pair RR addressing.

MEMORY DATA FORMATS

The memory area (ROM and RAM 0000_H-FFFF_H) supports processing for all 4 data types: bit, 4-bit BCD, byte and word data. However, bit data is limited to the ranges (0000_H-00FF_H, FF00_H-FFFF_H), and 4-bit BCD data to the ranges 0000_H-00FF_H. Fig. 3 shows the data layout in memory.

• Bit data (memory)

Bit manipulation instructions access bit data in memory by register index n(r) addressing, which gives the byte address in the range (0000_H-00FF_H), or by direct special page DAp addressing, which gives the byte address in the range (FF00_H-FFFF_H), and the operand b, which gives the bit number within the byte.

• Byte data (memory)

Instructions access the byte data in memory by shorthand (0000_H-00FF_H or FF00_H-FFFF_H) or full (0000_H-FFFF_H) address.

Word data (memory)

Instructions access the word data, continue 2 bytes, in memory by shorthand (0000 $_{\rm H}$ -00FF $_{\rm H}$ or FF00 $_{\rm H}$ -FFFF $_{\rm H}$) or full (0000 $_{\rm H}$ -FFFF $_{\rm H}$) address.

Unlike word data in the register file, the address can be even or odd.

BCD data (memory)

The decimal adjust instruction (DA), used to adjust BCD digits after an odd or subtraction, accesses a BCD data byte in memory by register index @r addressing.

Notice for general register on memory

The general registers are actually in a RAM area specified by register pointer RP, so they can be read and modify directly as RAM. While programming, the programmer must take care to arrange program data so that other RAM operations do not destroy general registers content.

Bus Timing

The SM85CPU is variable for system clock. The bit FCPUS2-FCPUS0 (bits 5 to 3 : CKKC) of the clock changing register CKKC can select system clock to 1/2, 1/4, 1/8, 1/16 and 1/32 of the main clock and 1/2 of sub-clock. The CPU operates at 1/32 clock of the main clock after hardware reset.

INTERNAL MEMORY ACCESS TIMING

The read cycle of internal RAM is 2 cycles. The internal RAM supports 2 cycles for reading or writing.

EXTERNAL MEMORY ACCESS TIMING

The external memory supports 2 cycles for reading or writing. Fig. 5 shows the read timing and Fig. 6 shows the write timing.

INSTRUCTION PREFETCH

The SM85CPU, which execution cycle overlaps with the OP code, fetches next instruction OP code during one instruction execution cycle. For example, the execution time for 2 bytes instructions (MOV R, r) of transferring the RAM contents to a register is 4 cycles.

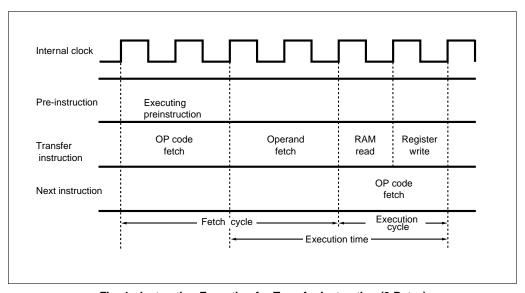
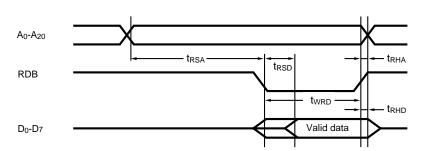



Fig. 4 Instruction Execution for Transfer Instruction (2 Bytes)

• External memory access timing (read timing)

 $t_{\mbox{\scriptsize RSA}}$: The time between address firm and RDB signal falling Low level firm.

 $t_{\mbox{\scriptsize RSD}}$: The time between RDB signal firm and input valid data firm.

twrd: RDB signal Low level width.

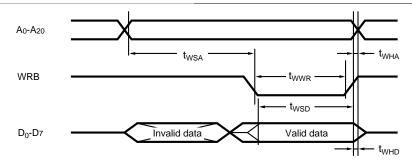
 $t_{\mbox{\scriptsize RHA}}$: The time between RDB signal rising High level firm and address change.

 t_{RHD} : The time between RDB signal rising High level firm and output data floating.

Load capacitance is 50 pF.

Fig. 5 External Memory Access Timing (Read Timing)

Operating condition


 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{OPR} = -10 \text{ to } 60^{\circ}\text{C})$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Address setup time	t rsa		tsys	tsys + 50	ns	1
Read data setup time	t rsd			tsys/2 - 30	ns	1
RDB signal pulse width	twrd	tsys - 50		tsys	ns	1
Address hold time	t rha	0			ns	
Read data hold time	t RHD	0			ns	

NOTE:

 tsvs: The system clock period (main clock x 1/2) when the low order 3 bits in the clock change register FCPUS2-FCPUS0 are 100_B.

• External memory access timing (write timing)

twsa: The time between address firm and WRB signal falling Low level firm.

twsp: The time between WRB signal rising High level firm and output valid data firm.

twwr: WRB signal Low level width.

twha: The time between WRB signal rising High level firm and address change.

 $t_{\mbox{\scriptsize WHD}}$: The time between WRB signal rising High level firm and output data floating.

Load capacitance is 50 pF.

Fig. 6 External Memory Access Timing (Write Timing)

Operating condition

 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{OPR} = -10 \text{ to } 60^{\circ}\text{C})$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Address setup time	twsa		t sys	tsys + 50	ns	1
Data setup time	twsp	tsys - 50	tsys + 30		ns	1
WRB signal pulse width	twwr	tsys - 60		tsys	ns	1
Address hold time	t wha	10			ns	
Data hold time	t whd	10			ns	

NOTE:

 tsvs: The system clock period (main clock x 1/2) when the low order 3 bits in the clock change register FCPUS2-FCPUS0 are 100_B.

SYSTEM CONTROL Oscillator Circuit

The SM8521 is built-in the main-clock and subclock oscillator circuits for generating clock signal. The main-clock oscillator circuit is applied to 1.5 to 10 MHz. The sub-clock oscillator circuit is applied to 32.768 kHz.

Clock System

The SM8521 uses the main-clock and sub-clock oscillator circuits to generate the required clock.

The system clock, leads CPU operation, is one of the five clocks which divides the main-clock (f_{CK}) into 1/2, 1/4, 1/8, 1/16 and 1/32. It also selects from sub-clock (f_{32K}). In addition, the clocks supplied to the peripheral functions are f_{C1} - f_{C1} 0 divided by the prescaler PRS0 and derived from the 1/2 clock of main-clock (f_{CK} /2), and f_{X1} - f_{X8} divided by the prescaler PRS1 and derived from the sub-clock.

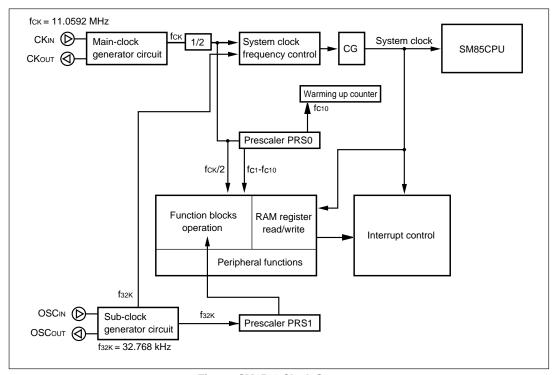


Fig. 7 SM8521 Clock System

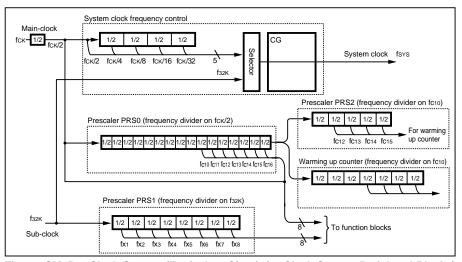


Fig. 8 SM8521 Clock System (Equivalent Circuit for Clock System Peripheral Blocks)

Clock change register (CKKC)

Clock change register CKKC is an 8-bit readable/ writable register containing the control of system clock change and the setting of warming up period after waking up from the STOP mode.

Clock change register CKKC is initialized to $00\mathrm{H}$ after hardware reset.

Bit 7 : Clock change enable bit (FCPUEN)

BIT	CONTENT
0	Disables system clock speed change
1	Enables system clock speed change

Bit 6: Main-clock stopped bit (MCKSTP)

Main-clock stopped allows switching to sub-clock used as system clock.

BIT	CONTENT
0	Main-clock operation
1	Main-clock stop

Bits 5 to 3 : System clock selection bits (FCPUS2-FCPUS0)

Under the bit FCPUEN = '1', if executes the STOP instruction, the bits will be valid.

BIT	SYSTEM CLOCK FREQUENCY
000	System clock = (1/32) x main-clock
001	System clock = (1/16) x main-clock
010	System clock = (1/8) x main-clock
011	System clock = (1/4) x main-clock
100	System clock = (1/2) x main-clock
101, 110	Reserved
111	System clock = (1/2) x sub-clock

Bit 2: Reserved bit (TFCPU)

Always write '0' to this position. Writing a '1' produces unrealiable operation.

Bits 1 to 0 : Warming up selection bits (WUPS1-WUPS10)

The bits are able to set the warming up period of after wake up from STOP mode.

	WARMING UP PERIOD AFTER STOP
BIT	MODE RELEASES
	(when main-clock (fcк) = 10 MHz)
00	218 x main-clock period (26.21 ms)
01	2 ¹⁷ x main-clock period (13.10 ms)
10	2 ¹⁶ x main-clock period (6.553 ms)
11	2 ¹⁵ x main-clock period (3.276 ms)

Memory Map

Fig.9 shows the SM8521 memory map.

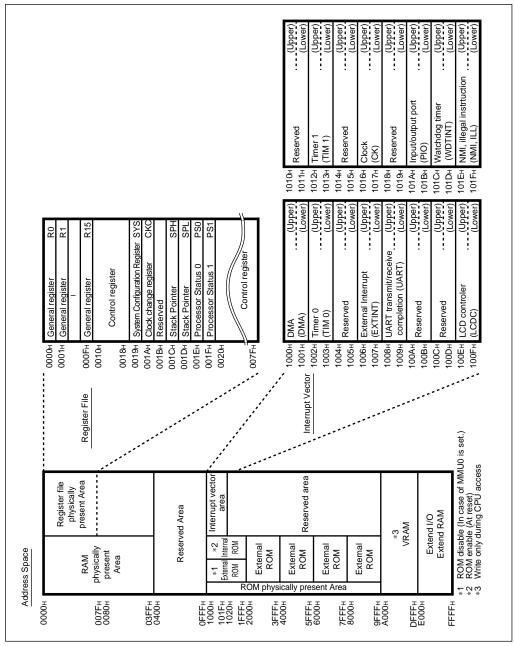


Fig. 9-1 SM8521 Memory Map (1)

Address	Register name		R	R/W Initial value	Address	Register name		&	Initial value
+0000	General purpose register R0	0	R/W	Undefined	0020н	PIO control register 0	POC	R/W	н00
0001н	General purpose register R1		R/W	Undefined	0021н	PIO control register 1	P1C	R/W	н00
0002н	General purpose register R2		R/W	Undefined	0022н	PIO control register 2	P2C	R/W	н00
н€000	General purpose register R3	3 RRZ	R/W	Undefined	0023н	PIO control register 3	P3C	R/W	н00
0004н	General purpose register R4		R/W	Undefined	0024н	MMU data register 0	MMU0	R/W	н00
0005H	General purpose register R5	72 XX 44	R ≪	Undefined	0025н	MMU data register 1	MMU1	R/W	н00
H9000	General purpose register R6		R/W	Undefined	0026н	MMU data register 2	MMU2	R/W	н00
н2000	General purpose register R7	7 KR0	R/W	Undefined	0027н	MMU data register 3	MMU3	R/W	н00
+8000	General purpose register R8		R ≪	Undefined	0028н	MMU data register 4	MMU4	R/W	н00
⁺ 6000	General purpose register R9	9 2 2 2 2 3	R ≪	Undefined	0029н	Reseved			ı
000Ан	General purpose register R10		R.W	Undefined	002Ан	Reseved			ı
000Вн	General purpose register R11	7 X 5	R ≪	Undefined	002Вн	UART Transmit data register	URTT	>	FF
н 2000	General purpose register R12		R/W	Undefined	002Сн	UART Receive data register	URTR	2	н00
000DH	General purpose register R13	3 KK12	R.	Undefined	002DH	UART Status register	URTS	ď	0*000010
000Ен	General purpose register R14		R.	Undefined	002Ен	UART Control register	URTC	R/W	н00
000F ^H	General purpose register R15	7 7 7 4	R ≪	Undefined	002Fн	Reseved			ı
0010⊬	Interrupt enable register 0	IE0	R ≪	н00	0030н	Control/Status register	CCC	R.W	н00
0011⊬	Interrupt enable register 1	IE1	R/W	н00	0031н	Display H-timing register	ГСН	R/W	000000**
0012н	Interrupt request register 0	IR0	R/W	н00	0032н	Display V-timing register	CCV	R/W*1	0*00000
0013⊬	Interrupt request register 1	IR1	R/W	н00	нее00	Reserved			ı
0014н	PIO data register 0	PO	R.	н00	0034н	Controler register	DMC	R/W	0*00000
0015∺	PIO data register 1	7	R M M	н00	0035н	Source X-coordinate register	DMX-1	R.W.	н00
0016н	PIO data register 2	P2	R.W	н00	9800	Source Y-coordinate register	DMY-1	RW	н00
0017н	PIO data register 3	P3	R/W	н00	0037н	X-width register	DMDX	R/W	н00
0018∺	Reserved		,	1	0038н	Y-width register	DMDY	R.W	н00
0019⊬	System configuration register	r SYS	R/W	0000000*	н6600	Destination X-coordinate register	DMX2	RW	н00
001Ан	Clock change register	CKC	R.	н00	003Ан	Destination Y-coordinate register	DMY2	RW	н00
001Вн	Reserved		,	ı	003Вн	Pallet register	DMPL	R/W	н00
001C∺	Stack pointer H SPH		R ≪	Undefined	003C ^H	ROM bank register	DMBR	R.W	*0000000
001D∺	Stack pointer L SPL	ر ا	R/W	Undefined	н О03 Он	VRAM page register	DMVP	R/W	00****
001Ен	Processor status register 0	PS0	R/W	Undefined	003Ен	Reserved			•
001F∺	Processor status register 1	PS1	R⁄W	0***	003Fн	Reserved			
OTEO.									

Fig. 9-2 SM8521 Memory Map (2)

OTES .

(The register indicated by R/W includes the bit of special-purpose register for read). R indicates that the register is only for read. • R/W indicates that there is at least one bit in the register is capable of read/write.

* indicates that the corresponding bit is undefined.

*1 The most significant bit is read only.

Address	Register name	R/W	Initial	Address	Register name		₽	Initial
0040⊬	SG control register SGC	S RW	0000***0	+0900	SG0 waveform register 0	SG0W0	R/W	Undefined
0041⊬	Rserved		1	0061⊬	SG0 waveform register 1	SG0W1	R/W	Undefined
0042⊬	SG0 output level control register SG0L	- R/W	00000***	0062⊬	SG0 waveform register 2	SG0W2	R/W	Undefined
0043⊬	Rserved	•	1	⊬E900	SG0 waveform register 3	SG0W3	R/W	Undefined
0044∺	SG1 output level control register SG1L	- R/W	00000***	0064⊬	SG0 waveform register 4	SG0W4	R/W	Undefined
0045⊬	Rserved			0065⊬	SG0 waveform register 5	SG0W5	R/W	Undefined
0046⊬	SG0 time constant register (High) SG0TH	H R/W	0000****	н9900	SG0 waveform register 6	SGOW6	R/W	Undefined
0047⊬	SG0 time constant register (Low) SG0TL	- R/W	н00	[⊬] 2900	SG0 waveform register 7	SG0W7	R/W	Undefined
0048⊬	SG1 time constant register (High) SG1TH	H R/W	0000****	H8900	SG0 waveform register 8	SG0W8	W/W	Undefined
0049⊬	SG1 time constant register (Low) SG1Tl	- R/W	н00	^н 6900	SG0 waveform register 9	SG0W9	R/W	Undefined
004Ан	SG2 output level control register SG2L	- R/W	00000***	006Ан	SG0 waveform register 10	SG0W10	R/W	Undefined
004Вн	Rserved		1	н В900	SG0 waveform register 11	SG0W11	R/W	Undefined
004C⊬	SG2 time constant register (High) SG2TH	H R/W	0000****	006Сн	SG0 waveform register 12	SG0W12	R/W	Undefined
004Дн	SG2 time constant register (Low) SG2T1	- R/W	н00	нО900	SG0 waveform register 13	SG0W13	R/W	Undefined
004Ен	SG-D/A direct output register SGDA	A	+00	н⊒900	SG0 waveform register 14	SG0W14	R/W	Undefined
004Fн	Rserved		1	н 1900	SG0 waveform register 15	SG0W15	R/W	Undefined
0020⊬	Timer control register 0 TM0C	S. W.	0000****	0070⊬	SG1 waveform register 0	SG1W0	R/W	Undefined
0051⊬	Timer data register 0 TM0D	C R/W	+00	0071н	SG1 waveform register 1	SG1W1	R/W	Undefined
0052н	Timer control register 1 TM1C	RW	0000***0	0072⊬	SG1 waveform register 2	SG1W2	R/W	Undefined
0053⊬	Timer data register 1 TM1D	RW	[∺] 00	9073⊬	SG1 waveform register 3	SG1W3	R/W	Undefined
0054⊬	Clock timer CLKT	*	н00	0074⊬	SG1 waveform register 4	SG1W4	R/W	Undefined
0055⊬	Reserved		1	9075⊬	SG1 waveform register 5	SG1W5	R/W	Undefined
н9500	Reserved	-	-	н9 ∠ 00	SG1 waveform register 6	SG1W6	R/W	Undefined
н ∠ 200	Reserved	-	-	н2200	SG1 waveform register 7	SG1W7	R/W	Undefined
0058⊬	Reserved	•	-	н8700	SG1 waveform register 8	SG1W8	R/W	Undefined
H6500	Reserved		1	[⊬] 6200	SG1 waveform register 9	SG1W9	R/W	Undefined
005Ан	Reserved			007Ан	SG1 waveform register 10	SG1W10	R/W	Undefined
005Вн	Reserved		1	007Вн	SG1 waveform register 11	SG1W11	R/W	Undefined
005Сн	Reserved	•	1	007Сн	SG1 waveform register 12	SG1W12	R/W	Undefined
005Dн	Reserved		-	007Дн	SG1 waveform register 13	SG1W13	R/W	Undefined
005Ен	Watchdog timer register WDT	R	+00	007Ен	SG1 waveform register 14	SG1W14	R/W	Undefined
005Fн	Watchdog timer control register WDTC	S R/W	38н	907	SG1 waveform register 15	SG1W15	R/W	Undefined
OTEO.								

Fig. 9-3 SM8521 Memory Map (3)

NOTES:

(The register indicated by R/W includes the bit of special-purpose register for read). R indicates that the register is only for read. • R/W indicates that there is at least one bit in the register which is capable of read/write.

*1 Bits 0 to 5 are read only. Bits 6 and 7 are read/write.

 ^{*} indicates that the corresponding bit is undefined.

Hardware Reset

The hardware reset is an initial function for SM8521 system and comes from the following sources.

External reset

If the RESETB pin is applied to Low level in SM8521 operating, the hardware resets.

· Watchdog timer overflow

While watchdog timer overflows, the hardware resets.

The above 2 hardware reset sources initializate the system.

OPERATING EXPLANATIONS

Hardware reset operation

When the SM8521 is operating, a built-in pull-up resistor keeps the RESETB pin at High level. If external circuit (like as reset IC etc.) applies Low level voltage to RESETB pin, the SM8521 is reset by hardware after approximately two instruction cycles. To ensure hardware reset execution keeps

the RESETB pin at Low level over two instruction cycles of system clock.

The pin back to High level from Low level starts the warming up counter built-in SM8521. When the counter overflows, about 2¹⁸ x main-clock leaves its hardware reset state and begins the program execution from the instruction at address 1020_H. In the warming up interval, SM8521 is in HALT mode state.

Same as watchdog timer overflow case, the CPU leaves the hardware reset behind warming up period.

Interrupt Function

The SM8521 supports 10 interrupt sources.

In these interrupts, watchdog timer and illegal instruction trap interrupts belong to non-maskable interrupts, the others, however, are maskable interrupts. 10 interrupt sources are shared to independent interrupt vector respectively, in the ROM address area between 1000H-101FH. And, the maskable interrupts are set 8 steps with priority level.

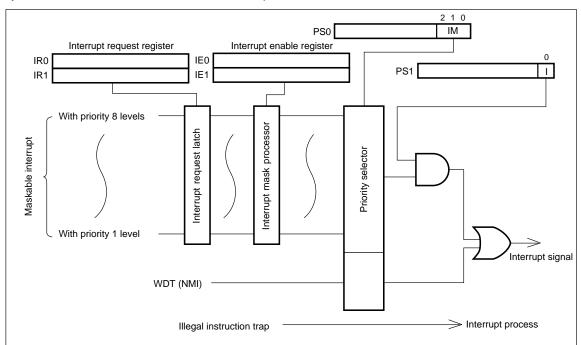


Fig. 10 Interrupt Block Diagram

VECTOR LOCATION	INTERRUPT SOURCE	SYMBOL	PRIORITY*
1000н	DMA	DMAINT	1
1002н	Timer 0	TIMOINT	2
1006н	External interrupt	EXTINT	3
1008н	UART transmit/receive complete	UARTINT	4
100Ен	LCD controller	LCDCINT	5
1012н	Timer 1	TIM1INT	6
1016н	Clock	CKINT	7
101Ан	Input/output port	PIOINT	8
101Сн	Watchdog timer overflow	WDTINT	_

Table 3 SM8521 Interrupt Vectors Location and Their Priority

REGISTER EXPLANATIONS

101Ен

PS0 (Interrupt maskbit (IM) of processor status 0)

NMI, illegal instruction

The bits IM2-IM0 can set the acceptable level for interrupt. The maskable interrupt requested by CPU is set 1 to 8 priority levels. These bits IM2-IM0 determine processing interrupts which priority levels.

Bits 2 to 0 : Interrupt mask bits (IM2-IM0)

NMIINT, ILLINT

BIT	CONTENT
000	All maskable interrupts recognized.
001	All maskable interrupts recognized.
010	Maskable interrupts with 1 to 7 level
010	recognized.
011	Maskable interrupts with 1 to 6 level
	recognized.
100	Maskable interrupts with 1 to 5 level
100	recognized.
101	Maskable interrupts with 1 to 4 level
101	recognized.
110	Maskable interrupts with 1 to 3 level
110	recognized.
111	Maskable interrupts with 1 to 2 level
	recognized.

NOTE:

When an interrupt enables by interrupt mask bit, if all interrupt conditions are setup, then the CPU starts to the interrupt processing.

^{*} The priority levels determine the order in which the chip process simultaneous interrupts. It also denotes the priority level of mask interrupts by setting the bits IM2-IM0 (bits 2-0 : PS0).

PS1 (Interrupt enable bit (I) of processor status 1)

The bit I (bit 0 : PS1) enables/disables all maskable interrupts. After hardware reset, the bit I is set '0' and so all maskable interrupts are in disable state.

Bit 0 : Interrupt enable (I)

BIT	CONTENT
0	Disables to accept all maskable interrupts
	Enables to accept maskable interrupt. For
1	each maskable interrupt can be enabled/
'	disabled by interrupt enable register IE0, IE1
	and bits IM2-IM0.

Except that write to processor status PS1 directly, the bit I can be set/cleared by the following special-purpose instructions. (Under normal case, the special-purpose instructions are used.)

DI instruction: bit I is set '0'. El instruction: bit I is set '1'.

IE0 (Interrupt enable register 0)

The interrupt enable register IE0 is an 8-bit readable/writable register containing the settings for enable/disable to accept interrupt sources.

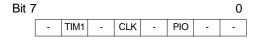
Bit 7	7							0	
	DMA	TIM0	-	EXTINT	UART	-	-	LCDC	

Bit 7 : DMA interrupt enable bit

Bit 6: Timer 0 interrupt enable bit

Bit 5 : Sets '0'.

Bit 4 : External interrupt enable bit Bit 3 : UART interrupt enable bit


Bits 2 to 1 : Set '0'.

Bit 0 : LCD cotroller interrupt enable bit

BIT	CONTENT
0	Disable
1	Enable

IE1 (Interrupt enable register 1)

The interrupt enable register IE1 is an 8-bit readable/writable register containing the settings for enable/disable to accept interrupt sources.

Bit 7 : Sets '0'.

Bit 6: Timer 1 interrupt enable bit

Bit 5 : Sets '0'.

Bit 4: Clock interrupt enable bit

Bit 3 : Sets '0'.

Bit 2 : PIO interrupt enable bit

Bits 1 to 0 : Set '0'.

BIT	CONTENT
0	Disable
1	Enable

The interrupt enable register IEO and IE1 are also used to wake up the chip from standby mode (STOP mode, HALT mode) by setting the interrupt to enable. If the interrupt enabled by the interrupt enable register IEO and IE1 occurs, the chip will wake up from standby mode. But also there are interrupt sources which cannot use to wake up from STOP mode. For more details, refer to "Stand by Function".

IR0 (Interrupt request register 0)

The interrupt request register IR0 is an 8-bit readable/writable register containing the setting for enable/disable to accept interrupt sources.

Bit 7 0

| DMA | TIMO | - | EXT | UART | - | - | LCDC

Bit 7: DMA interrupt request bit

Bit 6: Timer 0 interrupt request bit

Bit 5 : Sets '0'.

Bit 4 : External interrupt request bit

Bit 3: UART interrupt request bit

Bit 2 : Sets '0'. Bit 1 : Sets '0'.

Bit 0 : LCD controller Interrupt Request bit

BIT	CONTENT
0	Disable
1	Enable

IR1 (Interrupt request register 1)

The interrupt request register IR1 is an 8-bit readable/writable register containing the setting for enable/disable to accept interrupt sources.

Bit 7 0

Bit 7: Sets '0'.

Bit 6: Timer 1 interrupt request bit

Bit 5 : Sets '0'.

Bit 4: Clock interrupt request bit

Bit 3: Sets '0'.

Bit 2 : PIO interrupt request bit

Bit 1 to 0 : Set '0'.

BIT	CONTENT
0	Disable
1	Enable

The interrupt request register IR0 and IR1 are also used to wake up the chip from standby mode (STOP mode, HALT mode) by setting the interrupt to enable. If the interrupt enabled by the interrupt request register IR0 and IR1 occurs, the chip will wake up from standby mode. But also there are interrupt sources which cannot use to wake up from STOP mode. For more details, refer to "Standby Function".

Standby Function

The standby function is a function which temporarily stops program execution so as to conserve power. The standby mode is when the chip enters temporary stop state from the operating state, executing program. It contains both STOP and HALT modes, either of which can be selected according to your desires.

If the CPU executes the STOP mode or HALT mode, the chip will switch to standby mode from an operating mode. If the wake up source of the standby mode encounters an interrupt the chip returns to operating mode from the standby mode. Fig. 11 shows its state transition diagram.

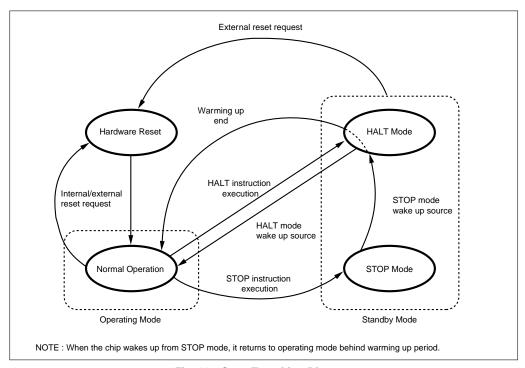


Fig. 11 State Transition Diagram

NOTE:

The STOP instruction is also used for clock change function, which its operation is different from switching the chip to STOP mode, take care to use it.

		HALT MODE	STOP MODE
Transition method		HALT instruction execution	STOP instruction execution
Wake up method		Hardware reset, interrupt	Hardware reset, interrupt*1
	CPU	Stop	Stop
	Main-clock	Operating	Stop
	Sub-clock	Operating	Operating
	RAM, register	Remain*2	Remain*2
	I/O port	Remain (interruptable)	Remain (interruptable)
Function	Timer	Operating	The timer used main-clock as counter clock is stop. It
blocks	Timei	Operating	used external clock as counter clock can still operate.
	Capture trigger	Operating	Stop
	UART	Operating	Stop
	LCDC	Operating	Stop
	Waveform generator	Operating	Stop

Table 4 System State at Standby Mode

*2 General registers, control registers, and the other memory content all are remained. But something will be changed for the operatable blocks at STOP mode (for example, interrupt flag register IR0, IR1 content, etc.)

ABOUT HOU TO USE HALT MODE AND STOP MODE

The chip switches back to the operating mode from the HALT mode immediately after the wake up sources are encountered. For this reason, the HALT mode is more suitable for systems that need to be immediately woke up frequently. And, all interrupt sources (other than illegal instruction trap) can wake up the chip from the HALT mode.

Switching back to the operating mode from the STOP mode after the wake up sources are encountered must pass a warming up period. In addition, the function blocks used by the main-clock cannot be used in the wake up from STOP mode. Since the sampling circuit is stopped, it can not accept the PINTo input, either.

For this reason, the STOP mode (conserving more power than the HALT mode) is suitable for systems that can easily support the longer time that it will take to get, back to the operating mode (warming up period) .

Before switches to standby mode, in order to reduce to the current through every pins, set with program.

^{*1} The interrupts used to wake up the chip from STOP mode only have the external interrupts and the internal interrupts generated by operatable Timer, and SIO.

I/O PORTS

The SM8521 supports four 8-bit I/O ports. Each port can be selected one out of input, outpit, input with built-in pull-up resistor and open-drain in each 2-bit.

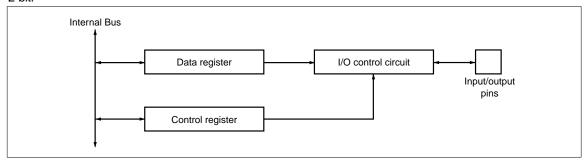


Fig. 12 PIO Block Diagram

P0 to P3 (PIO data register)

Bit 7	7							0
	Px7	Px6	Px5	Px4	Px3	Px2	Px1	Px0
						(x =	0, 1,	2, 3)

NOTE:

In case of reading P0-P3 register on condition that control register is input state, data of those pins is read. In case of on condition that control register is output state, data of register is read.

P0C to P2C (PIO control register)

Bits 7 to 6:

BIT	CONTENT
00	Input
01	Input (with pull-up resistor)
10	Output
11	Output (open-drain)

Bits 5 to 4:

BIT	CONTENT
00	Input
01	Input (with pull-up resistor)
10	Output
11	Output (open-drain)

Bits 3 to 2:

BIT	CONTENT
00	Input
01	Input (with pull-up resistor)
10	Output
11	Output (open-drain)

Bits 1 to 0:

BIT	CONTENT
00	Input
01	Input (with pull-up resistor)
10	Output
11	Output (open-drain)

P3C (Control register)

Bit 7 0 P3C7 P3C6 P3C5 P3C4 P3C3 P3C2 P3C1 P3C0

Bits 7 to 6:

BIT	CONTENT
00	Input
01	Input (with pull-up resistor)
10	Output/(Timer 1 clock outputs through P37)
11	Output/(Timer 1 clock outputs through P37)

Bits 5 to 4:

BIT	CONTENT
00	Input
01	Input (with pull-up resistor)
10	Output
11	Output (open-drain)

Bits 3 to 2:

BIT	CONTENT
00	Input
01	Input (with pull-up resistor)
10	Output
11	Output (open-drain)

Bits 1 to 0:

BIT	CONTENT
00	Input
01	Input (with pull-up resistor)
10	Output
11	Output (open-drain)

TIMER/COUNTERS

The SM8521 supports 8-bit timer x 2, and clock timer x 1. One out of 8-bit prescaler output can be selected as an 8-bit timer input.

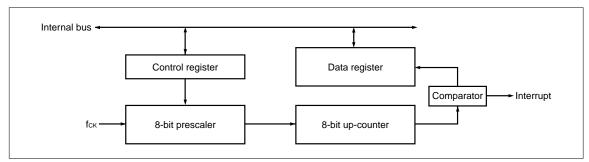
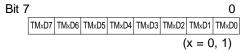


Fig. 13 8-Bit Timer Block Diagram

8-BIT TIMER REGISTER


TM0C, TM1C (Control registers)

Bit 7	7							0
	TMxC7	TMxC6	TMxC5	TMxC4	TMxC3	TMxC2	TMxC1	TMxC0
							x = 0), 1)

Bit 7: Start/stop Bits 6 to 3: Set '0' Bits 2 to 0:

PRESCALER	INPUT CLOCK FOR 8-BIT UP-COUNTER
000	fck/2
001	fcк/1 024
010	fcк/2 048
011	fcк/4 096
100	fcк/8 192
101	fcк/16 384
110	fcк/32 768
111	fcк/65 536

TM0D, TM1D (Data register)

Bits 7 to 0 : Content of counter (read), time constant (write)

NOTES:

- After reset, the status of both TM0C and TM1C becomes 0****000B, and both TM0D and TM1D becomes 00000000B.
- Every time between the value of 8-bit up counter and the value of time constant register coincide in timer execution, output signal inverts.

Clock Timer

Clock timer is for real time clock. Dividing sub-clock (32.768 kHz), 1 s or 1 min interrupt occurs.

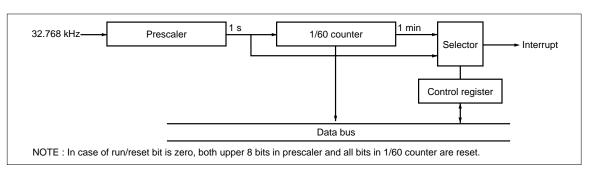
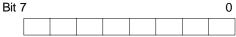



Fig. 14 Clock Timer Block Diagram

CLOCK TIMER REGISTER

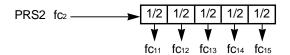
CLKT (Clock timer register)

Bit 7: Run/reset

BIT	STATUS
0	Counter reset
1	Run

Bit 6: Minute/second

BIT	STATUS
0	1 second
1	1 minute


Bits 5 to 0 : Value of counter (read only)

Watchdog Timer Register (WDT) PRS2 (Prescaler 2)

Prescaler PRS2 generates the count clock to watchdog timer counter WDT.

The following conditions are to clear all bits of prescaler PRS2.

- When hardware reset.
- When watchdog timer counter WDT stopped.
- When counter WDT is cleared by writing '1' to the bit WDTCR (bit 3 : WDTC).

Prescaler PRS2 divides the frequency derived from input clock fc_{10} (204.8 µs : main-clock = 10 MHz), then fc_{11} - fc_{15} are output.

WDT (Watchdog timer counter register)

Watchdog timer counter WDT is an 8-bit read only register which counts up from input clock.

WDTC (Watchdog timer control register)

Watchdog timer control WDTC is an 8-bit read only register which sets watchdog timer to start/stop, counter clear designation, and selects the count clock.

Bit 7: Watchdog timer start/stop bit (WDTST)

BIT	CONTENT
0	Timer stop [WDT is cleared.]
1	Timer start

Bit 6 : Operation select while watchdog timer overflow (WDTRN)

BIT	CONTENT	
0	Hardware reset	
1	Non-maskable interrupt	

Bits 5 to 4 : set '0'.

Bit 3 : Counter clear bit (WDTCR) [write only bit]

BIT	CONTENT		
0	No clear		
1	Only in writing operation, WDT is cleared.		

Bits 2 to 0 : Watchdog timer counter clock selection bits (WCNT2-WCNT0)

BIT	COUNT CLOCK
000	fc ₁₂ (819 µs*1)
001	fc ₁₃ (1.639 ms* ₁)
010	fc ₁₄ (3.278 ms* ₁)
011	fc ₁₅ (6.578 ms*1)
100	fx ₅ (0.976 ms* ²)
101	fx ₆ (1.95 ms* ²)
110	fx ₇ (3.90 ms* ²)
111	fx ₈ (7.81 ms* ²)

^{*1} The value in () is the period when main-clock is 10 MHz.

^{*2} The value in () is the period when sub-clock is 32.768 kHz.

LCDC/DMA

The SM8521 supports LCD controller (LCDC) to control LCD pannel, in a kind of dot matrix, which is required external LCD drivers.

LCDC transfers display data in the external VRAM to the LCD driver. The SM8521 supports a DMA, which can transfer the data at the High speed,

between ROM and VRAM, VRAM and VRAM, and external RAM and VRAM, without through the CPU.

DMA transfers display data in the ROM and external RAM to VRAM.

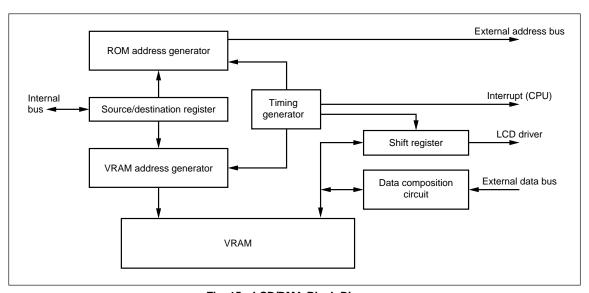


Fig. 15 LCD/DMA Block Diagram

VRAM Configulation

VRAM configulation is shown below.

VRAM, maximum 16 k bytes (160 x 200-dot x 2-phase or 200 x 160-dot x 2-plane), can be accessed. LCD diaplays a phase specified.

Address of VRAM0 and VRAM1 is A000H-BFFFH and C000H-DFFFH respectively.

DMA transfers rectangle display data, in arbitrary size specified in ROM and external RAM, to VRAM.

NOTE:

Do not write data directly to VRAM while transferring data to LCD driver (MSB of LCC register is 1 and V-blank flag is 0).

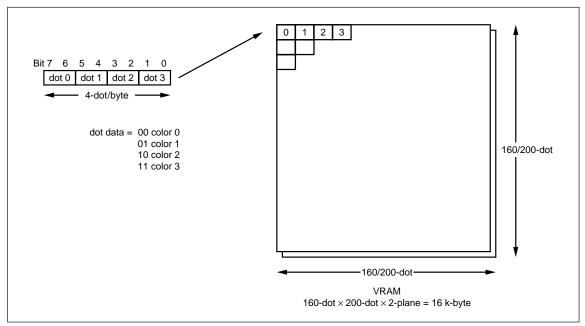
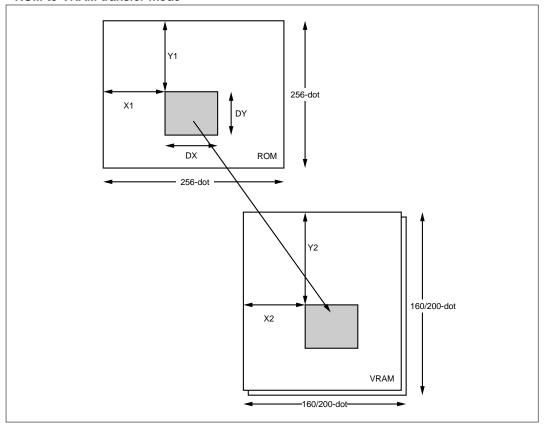
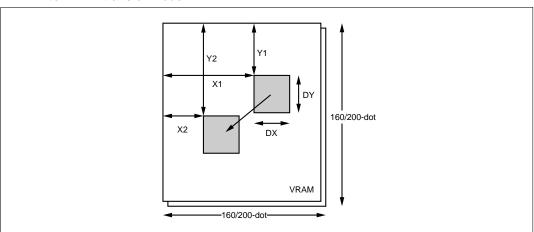



Fig. 16 VRAM Configuration


DMA Transfer

• ROM to VRAM transfer mode

Also, transfers between VRAMs.

• VRAM to VRAM transfer mode

Compound and Overwrite Mode

To transfer display data, DMA provides two modes. One is compound mode that source dot data zero is not stored into the destination. Second is

overwrite mode that any dot data is stored into the destination.

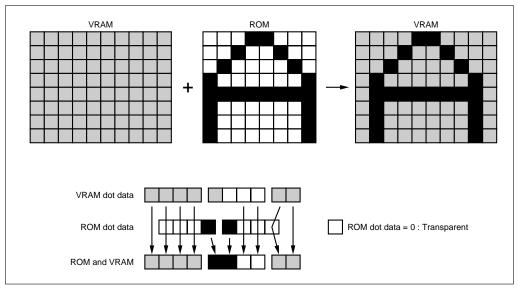


Fig. 17 An Example of Transfer ROM to VRAM in Compound Mode

Registers

LCDC/DMA registers are shown below. LCDC register is initialized at the system initialization. After setting each parameter, set the DMA start bit to '1' and execute HALT instruction, then DMA transfer starts.

LCC (LCD control/status register)

Bit 7 0

DISON DISPG GRAD1 GRAD0 LCCL2 LCCL1 LCCL0 NORWH

Bit 7: Display ON/OFF

BIT	DISPLAY ON/OFF
0	Display OFF
1	Display ON

Bit 6: Display page A/B bit

BIT	DISPLAY PAGE
0	Page A
1	Page B

Bits 5 to 4: Gradation control bits

(Depth of black and white on real LCD)

BIT		GRADATION CHOOSEN
00	0 Black	1 Gray 1 2 Gray 2 3 White
01	0 Black	1 Gray 1 2 Gray 3 3 White
10		Reserved
11	0 Black	1 Gray 2 2 Gray 3 3 White

NOTE: Gray scale

Bits 3 to 1: LCDC/DMA clock bits

BIT	LCDC/DMA CLOCK
000	fcx/2
001	fck/4
010	fcк/6
011	fcк/8
100	fcк/10
101	fcк/12
110	fcк/14
111	fcк/16

Bit 0: Normal white bar bit

l	BIT	STATUS
ı	0	Normal white
ı	1	Normal black

LCH (Display horizontal timing register)

Bit 7 0

- | - | HD0T | HTIM4 | HTIM3 | HTIM2 | HTIM1 | HTIM0

Bits 7 to 6 : Set '0'.
Bit 5 : H-dot size bit

BIT		HORIZONTAL DOT SIZE
0	160	
1	200	

Bits 4 to 0: H-timing bits

NOTE:

V-blank width bit must not be filled with 0000B. Otherwise, LCDC interrupt can not be effective.

Horizontal display cycle = (shift clock x LCDC/DMA clock) x (H-timing + 1)

Shift clock = 40 (at H-dot size = 160), 50 (at H-dot size = 200)

Frame cycle = Horizontal display cycle x (V-line size + V-blank width)

LCV (Display vertical timing register)

Bit 7 0

| VBLNK | - | VL1 | VL0 | VBWD3 | VBWD2 | VBWD1 | VBWD0 |

Bit 7: V-blank bit (read only)

BIT	STATUS	
0	Non-vertical blank period	
1	Vertical blank period	

Bit 6 : Sets '0'.

Bits 5 to 4: V-line size bits

BIT	V	ERTICAL LINE SIZE
00	100	
01	160	
10	200	

Bits 4 to 0: V-blank width bits

NOTE:

V-blank width bit must not be filled with 0000B. Otherwise, LCDC interrupt can not be effective.

Horizontal display cycle = (shift clock x LCDC/DMA clock) x (H-timing + 1)

Shift clock = 40 (at H-dot size = 160), 50 (at H-dot size = 200)

Frame cycle = Horizontal display cycle x (V-line size + V-blank width)

DMC (DMA control register)

Bit 7 0

| DMST | - | - | INDCY | INDCX | TRN1 | TRN0 | COOVr

Bit 7: DMA start bit

BIT	STATUS	
0	DMA stops	
1	DMA starts transfering data	

SM8521

Bits 6 to 5 : Set '0'.

Bit 4 : Increment y/decrement y bit (Increment/decrement y-coordinate of source)

BIT	STATUS
0	Increment y
1	Decrement y

Bit 3 : Increment x/decrement x bit (Increment/decrement x-coordinate of source)

BIT	STATUS
0	Increment x
1	Decrement x

Bits 2 to 1: Transfer mode bits

BIT	SOURCE → DESTINATION	
00	VRAM→VRAM	
01	ROM→VRAM	
10	Extend RAM→VRAM	
11	VRAM→Extend RAM	

Bit 0 : Compound/overwrite bit

BIT	STATUS			
0	Compound mode			
1	Overwrite mode			

How to overturn a character in right and left. 4-dot data is transferred as a unit, from ROM to VRAM or VRAM to VRAM. ROM is composed of 8 bits.

In case of "Increment x" is effective, 8-bit data is transfered as shown below.

On the other hand, in case of "Decrement x" is effective, 8-bit data is transferred as shown below.

In each 4-dot data is automatically swapped in right and left.

Position of all specified dots, maximun 256, is overturned with right and left in horizontal. The

heart of their X coordinates becomes an axis of symmetry.

DMX1 (Source X-coordinate register)

Bi	t 7							0
	DMX17	DMX16	DMX15	DMX14	DMX13	DMX12	DMX11	DMX10

DMY1 (Source Y-coordinate register)

Bi	t 7							0
	DMY17	DMY16	DMY15	DMY14	DMY13	DMY12	DMY11	DMY10

DMDX (X-width register (X-width-1))

DMDY (Y-width register (Y-width-1))

Bi	t 7							0	į
	DMDY7	DMDY6	DMDY5	DMDY4	DMDY3	DMDY2	DMDY1	DMDY0	١

DMX2 (Destination X-coordinate register)

Bi	t 7							0	•
	DMX27	DMX26	DMX25	DMX24	DMX23	DMX22	DMX21	DMX20	

DMY2 (Destination Y-coordinate register)

Bi	t 7							0	
	DMY27	DMY26	DMY25	DMY24	DMY23	DMY22	DMY21	DMY20	

DMPL (Pallet register)

DMPL register specifies gradation to dot data. When transferring, gradation data concerned with dot data of the DMPL register is stored to VRAM.

Bits 7 to 6: Dot data color 0 Bits 5 to 4: Dot data color 1 Bits 3 to 2: Dot data color 2 Bits 1 to 0: Dot data color 3

Example:

When dot data color 2 (10B) is specified under the status of the DMPL register filled with **01****B, bit 4 and 5 of the DMPL register are automatically selected. Dot data changes from color 2 (10B) to color 1 (01B). Then the dot data color 1 moves to specified VRAM.

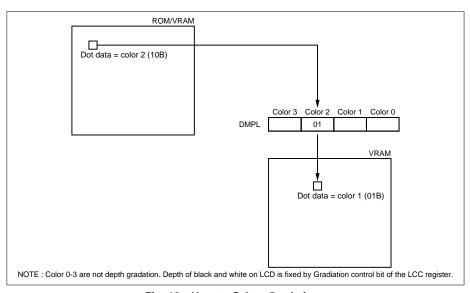


Fig. 18 How to Select Gradations

DMBR (ROM bank register)

DMBR register specifies ROM's bank being transferred. (Organization of bank is 256 x 256 dots. Bank specifies external memory address irrespective of MMU.)

DMVP(DMVP register)

DMVP register specifies a page (VRAM) in case of specifying VRAM to source and destination.

Bit 7	7							0
	-	-	-	-	-	-	SOUAB	DESAB

Bits 7 to 2 : Set '0'.

Bit 1: Destination page A/B

BIT	CONTENT				
0	Destination page A				
1	Destination page B				

Bit 0 : Source page A/B

BIT	CONTENT
0	Source page A
1	Source page B

SOUND GENERATOR

The SM8521 supports two waveform generators concerning arbitrary waveform output channel and one noise generator channel. After each channel's

signal is amplified through each variable register, a digital mixer mixes them into one and D/A outputs it.

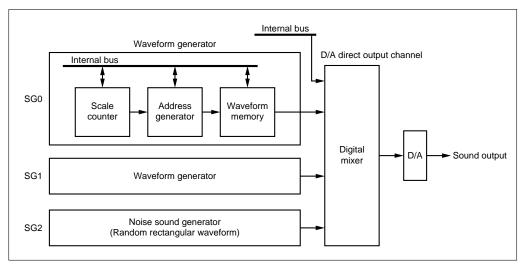


Fig. 19 Sound Generator Block Diagram

• Waveform generator

The data, 4-bit x 32 steps, stored in the waveform register (SGW0-15) is output at the timing of FCK (main clock) divided by time constant register.

Digital mixer

4-bit data generated from each generator is expanded to sixteen times as large as original 4-bit data. Those expanded data is added to one another after passing through digital attenuator (0, 1/32, 2/32, 31/32) of which attenuation rate is specified by output level control register.

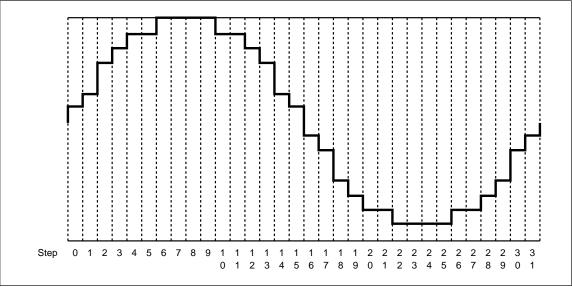
NOTE:

Attention to the sum total of each sound generator, not exceeding capacity of digital mixer.

Noise sound register

False noise, of which maximum frequency is based on cycle divided FCK (main clock) by time constant register, is output.

• D/A direct output register (in digital mixer)


When all sound generator 0, 1 and 2 are disable, the data stored in this register is directly effective as D/A input, provided that the data is stored in the SGDA register and both sound output enable register and D/A direct output enable registers are set.

NOTE:

All 12 bits of each SG0, SG1 and SG2 must not be filled with 0. If all 12 bits become 0, D/A can not perform correct output.

Sound Waveform Register

Sound waveform generator can outputs 16-tone wedge and 32-step sign waveform as shown below.

NOTE:

A period of one step is variable based on the value of Time constant register (SG0, SG1 and SG2 composed of 12 bits). The period can be lead from the formula shown below.

Period = fck(n-1)

Period: Time of one step

fck : System oscillation frequency n : Value of Time constant register

In order of Low and High, each 4-bit data is specified. Each SG0 and SG1 waveform register stores 4-bit x 32-step data as shown below.

Refer to SG0 and SG1 waveform registers in Fig. 9-3.

The most significant bit of each 4-bit data indicates

positive and negative.

That means, range of each 4-bit data is -8 to +7.

NOTE:

Waveform register read/write is possible only when SG is disable.

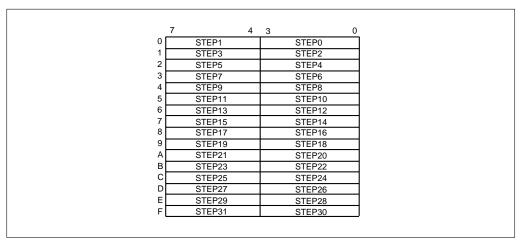


Fig. 20 Sound Waveform Register

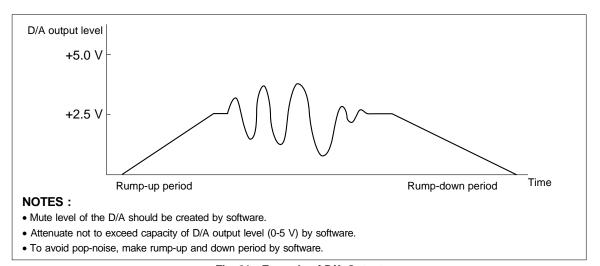


Fig. 21 Example of D/A Output

Registers

SGC (Control register)

Bits 7: Sound output enable

Bits 6 to 4 : Set '0'.

Bit 3: D/A direct output enable

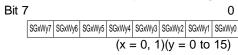
Bit 2 : SG2 output enable Bit 1 : SG1 output enable Bit 0 : SG0 output enable

SG0L, SG1L (Output level control register; 0, 1/32, 2/32...31/32)

The value of output level control register decides the digital attention rate.

SG0TL, SG1TL (Time constant register ; Low)

Bit 7 $\begin{array}{c|c} \text{SGxTL6} & \text{SGxTL6} & \text{SGxTL5} & \text{SGxTL4} & \text{SGxTL3} & \text{SGxTL2} & \text{SGxTL1} & \text{SGxTL0} \\ \hline & (x=0,\ 1) \end{array}$

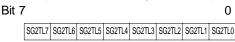

SG0TH, SG1TH (Time constant register; High)

Bits 7 to 4 : Set '0'.

A period of one step is variable based on the value of Time constant register (SG0TL, SG0TH, SG1TL and SG1TH composed of 12 bits.)

SG0W0-15, SG1W0-15 (Waveform register 0-15)

Bits 7 to 4 : Waveform data Low order Bits 3 to 0 : Waveform data High order


SG2L (Output level control register; 0, 1/32, 2/32...31/32)

Bits 7 to 5 : Set '0'.

The value of output level control register decides the digital attenuation rate.

SG2TL (Time constant register ; Low)

SG2TH (Time constant register; High)

Bits 7 to 4 : Set '0'.

A period of one step is variable based on the value of Time constant register (SG2TL and SG2TH composed of 12 bits).

SGDA (D/A direct output register; write only)

Bit 7 0
SGDA7 SGDA6 SGDA5 SGDA4 SGDA3 SGDA2 SGDA1 SGDA0

The value of SGDA register directly transfers digital mixer.

NOTES:

- Time constant register must be written by "MOVW" instruction.
- Each time constant register must not be filled with all "0" or only the Low significant bit is "1".

MMU

The SM8521 supports an MMU used to external memory area expansion.

Memory area 1000_H-9FFF_H, can be expanded to 2M-byte in each 8k-byte unit.

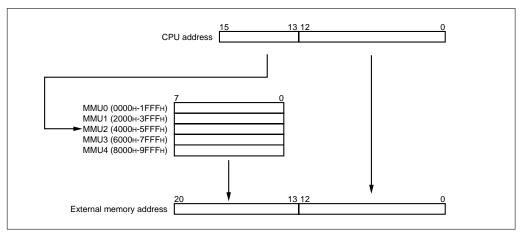


Fig. 22 An Example of MMU Switching Flow and Mapping

MMUx is selected depends on CPU address.

NOTE:

CPU can not access lower 4 k-byte of MMU0 because of occupied by internal RAM and register file. On the other hand, each 8 k-byte of external ROM is accessible as DMA's address.

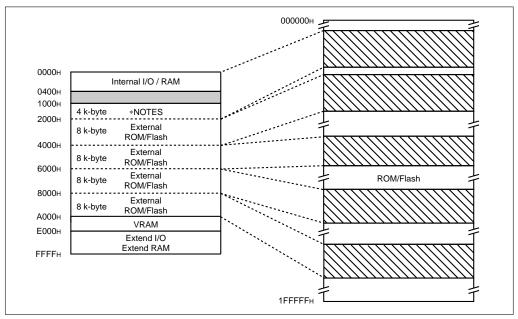


Fig. 23 MMU Mapping

NOTES:

- At reset, MMU0 is disable and internal ROM is enable.
 (1000H-1FFFH). At setting data into MMU0 once, internal ROM becomes disable and MMU0 becomes enable.
- In case of changing to external ROM mode by putting some data into MMU register, use Immediate R in "MOV"

instruction (MOV R, r or MOV R, R). Data in the next internal ROM address will be fetched at the same time of executing the instruction. Only one byte instruction can be followed when setting data to MMU0 register.

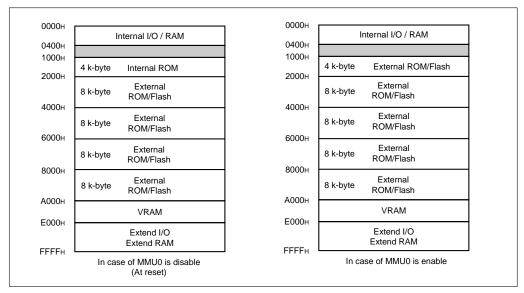


Fig. 24 Comparison Figure MMU 0 between Disable and Enable

UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER (UART) INTERFACE

SM8521 supports 1-channel universal asynchronous receiver and transmitter interface (UART) .

The UART interrupt has the following features.

- Transmitter and receiver are independent each other, full duplex communication possible.
- Receiver is consisted of duplex buffer, able to receive data continuously.
- The dedicated register for baud rate generator is built-in.

- It is possible to choose transfer format as following.
 - Stop bit: 1-bit/2-bit
 - Parity bit : even parity/odd parity/no parity
- · Receive error can be detected.
 - Frame error
 - Parity error
 - Overrun error

NOTE:

UART baud rate is fixed at [Timer 0 output/32]. Regarding Timer 0, refer to "8-Bit Timer Register TM0C".

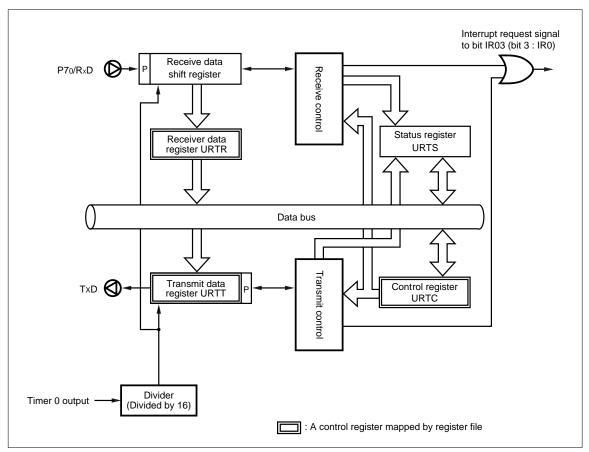


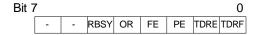
Fig. 25 UART Block Diagram

UART Transmit Data Register (URTT)

Transmit data register URTT is an 8-bit write only register which stores the UART transmit data.

When the transmission operation starts, the content

When the transmission operation starts, the content of this register LSB first is output from P7₁/TxD pin.


UART Receive Data Register (URTR)

Receive data register URTR is an 8-bit read only register which stores the UART receive data.

When the receive operation starts, the receive data LSB first will be moved into the receive data shift register from P7₀/RxD pin. Once the receive operation is complete, the content of the receive data shift register is loaded into this receive data register URTR (duplex buffer).

UART Status Register (URTS)

Status register (URTS) is an 8-bit read only register containing the flags of the UART interface transmit/receive status.

Bits 7 to 6 : Set '0'

Bit 5: Receiver busy bit (RBSY)

BIT	CONTENT
0	UART receiver is other than the following.
1	UART receiver processing incoming data.

Bit 4: Overrun error bit (OR)

BIT	CONTENT
	Clear condition
0	(1) While reading the status register URTS
	(2) Hardware reset
	Set condition
,	(1) While overrun error occurs (the next
1	receive is complete under the bit RDRF
	= '1'.) at receive data

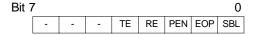
Bit 3: Frame error bit (FE)

BIT	CONTENT
	Clear condition
0	(1) While reading the status register URTS
	(2) Hardware reset
	Set condition
1	(1) While frame error occurs (stop bit = '0'
	is detected.) at receive data.

Bit 2 : Parity error bit (PE)

BIT	CONTENT			
Clear condition				
0	(1) While reading the status register URTS			
	(2) Hardware reset			
Set condition				
1	(1) Parity error occurs at receive data			

Bit 1 : Transmit data register empty bit (TDRE)


BIT	CONTENT				
	Clear condition				
0	(1) While writing to transmit data register				
URTT					
	Set condition				
,	(1) While having finished transmitting				
1	operation.				
	(2) Hardware reset				

Bit 0 : Receiver data register full bit (RDRF)

BIT	CONTENT			
	Clear condition			
0	(1) While reading from receive data register			
0	URTR			
	(2) Hardware reset			
	Set condition			
1	(1) While receive data is transferring to			
'	receive data register URTR from receive			
	data shift register.			

UART Control Register (URTC)

Control register URTC is an 8-bit readable/writable register specifying transfer format setting and transmit/receive operation controlling.

Bits 7 to 5 : Set '0'.

Bit 4: Transmit enable bit (TE)

Setting the bit TE to '1', starts the built-in baud rate generator and the interface enters transmissible status. In such status, if a transmit data is written to the transmit data register URTT, then will start the transmission operation. If the bit TE clears to '0', the transmitter will be initializated.

BIT	CONTENT		
0	Transmitter disable		
1	Transmitter enable		
'	(built-in baud rate generator operates)		

Bit 3: Receive enable bit (RE)

Setting the bit RE to '1', starts the built-in baud rate generator and the interface enters receivable status. In such status, if the start bit (= '0') is detected, then will start the receive operation.

If the bit RE clears to '0', the receiver will be initializated.

BIT	CONTENT		
0 Receiver disable			
1	Receiver enbable		
'	(built-in baud rate generator operates)		

Bit 2 : Parity enable bit (PEN)

BIT	CONTENT		
0	Transmit: the data with parity bit		
	Receive : parity enable		
1	Transmit : the data without parity bit		
'	Receive : parity disable		

Bit 1 : Even/odd parity bit (EOP)

BIT	CONTENT		
0	Even parity		
1	Odd parity		

Bit 0: Stop bit length bit (SBL)

			,	,	
BIT			CO	NTENT	
0	Sto	bit:1 bit			
1	Sto	bit: 2 bits			

Transfer Format

According to setting stop bit and parity bit by control register URTC, transfer format indicated by Fig. 26 can be selected.

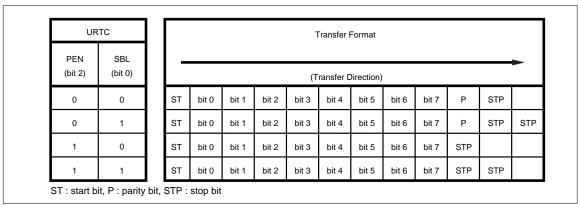


Fig. 26 Transfer Format

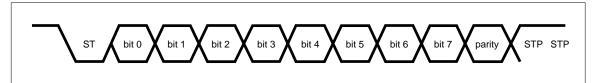


Fig. 27 8-Bit Mode Transfer Format (Example for Parity Added and 2 Stop Bits)

INSTRUCTION SET

The instruction set of the SM85CPU has the following characteristics :

- The instruction set is the result of subtle design and consists of 67 types of basic instructions.
 - The powerful bit manipulation instructions includes plural bits transfer, logical operation between bits, and the bit test and jump instructions that incorporates a test and condition branch in the same instruction.
 - There are transfer, operation and conditional branch instructions for 16-bit. The actions of transfer, operation and long jump for word data can be processed in High speed.
 - There are arithmetic instructions for multiplication and division.

Multiplication: 8-bit x 8-bit→16-bit

Division: 16-bit x 16-bit→16-bit remaining

8-bit

• 23 types of memory addressing mode

 By variety of memory addressing modes, the accessing to RAM, ROM, and register file can be operated.

Definition of Symbols

SYMBOL	EXPLANATION	
PC	Program counter	
SP	Stack pointer	
@SP	Indirect stack pointer	
PS0	Processor status 0	
PS1	Processor status 1	
С	Carry flag	
Z	Zero flag	
S	Sign flag	
V	Overflow flag	
D	Decimal complement flag	
Н	Half carry flag	
BF	Bit flag	
I	Interrupt enable	
dst	Destination	
src	Source	
СС	Condition code	

Instruction Summary

Load Instructions

INSTRUCTION	OPERAND	FUNCTION
CLR	dst	dst←0 (Clear)
MOV	dst, src	dst←src (Move)
MOVM	dst, IM, src	dst←(dst AND IM) OR src
IVIOVIVI	usi, iivi, sic	(Move Under Mask)
MOVW	det ere	dst←src
IVIOVV	dst, src	(Move Word)
POP	dst	dst←@SP, SP←SP+1
FOF	usi	(Pop from Stack)
POPW	dst	dst←@SP, SP←SP+2
FOFW		(Pop Word from Stack)
PUSH	oro	SP←SP-1, @SP←src
PUSH	src	(Push to Stack)
PUSHW	oro	SP←SP-2, @SP←src
FUSHW	src	(Push Word to Stack)

Arithmetic Operation Instructions

INSTRUCTION	OPERAND	FUNCTION
400	dst, src	dst←dst+src+C
ADC		(Add With Carry)
ADCW	det ere	dst←dst+src+C
ADCVV	dst, src	(Add Word With Carry)
ADD	dst, src	dst←dst+src (Add)
ADDW	dst, src	dst←dst+src (Add Word)
CMP	dst, src	dst-src (Compare)
CMPW	dst, src	dst-src
CIVIEVV	usi, sic	(Compare Word)
DA	dst	dst←DA dst
l DA	usi	(Decimal Adjust)
DEC	dst	dst←dst-1 (Decrement)
DECW	dst	dst←dst-1
DLCW	ust	(Decrement Word)
DIV	dst, src	dst←dst/src,
l Div		src←dst MOD src (Divide)
EXTS	dst	Extend sign (Extend Sign)
INC	dst	dst←dst+1 (Increment)
INCW	dst	dst←dst+1
INCV		(Increment Word)
MULT	dst, src	dst←dst x src (Multiply)
NEG	dst	dst← -dst (Negate)
SBC	dst, src	dst←dst-src-C
		(Subtract With Carry)
SBCW	dst, src	dst←dst-src-C
	usi, sit	(Subtract Word With Carry)
SUB	dst, src	dst←dst-src (Subtract)
SUBW	dst, src	dst←dst-src
30577		(Subtract Word)

Logical Operation Instructions

INSTRUCTION OPERAND		FUNCTION
AND	dst, src	dst←dst AND src
AND	usi, sic	(Logical And)
ANDW	dst, src	dst←dst AND src
ANDW	usi, sic	(Logical And Word)
СОМ	dst	dst←NOT dst
COIVI	usi	(Complement)
OR	dst, src	dst←dst OR src
		(Logical OR)
ORW	dst, src	dst←dst OR src
OKW	usi, sic	(Logical OR Word)
XOR	dst, src	dst←dst XOR src
) AOK	usi, sit	(Logical Exclusive OR)
XORW	dst, src	dst←dst XOR src
AORW	usi, sit	(Logical Exclusive OR Word)

Program Control Instructions

INSTRUCTION	OPERAND	FUNCTION
BBC	src, dst	If src = 0 then PC←PC+dst
		(Branch on Bit Clear)
BBS	src, dst	If src = 1 then PC←PC+dst
		(Branch on Bit Set)
BR	cc, dst	If cc = true then
BIX		PC← PC+dst (Branch)
CALL	dst	SP←SP-2, @SP←PC,
CALL	usi	PC←dst (Call Subroutine)
		SP←SP-2, @SP←PC,
CALS	dst	PC←dst
		(Short Call Subroutine)
	r, dst	r ← r -1, if $r \neq 0$ then
DBNZ		PC←PC+dst
DDINZ		(Decrement and Branch
		on Non-Zero)
IRET		PS1←@SP, SP←SP+1,
		PC←@SP, SP←SP+2
		(Return from Interrupt)
JMP	cc, dst	If cc = true, then PC←dst
		(Jump)
RET		PC←@SP, SP←SP+2
		(Logical Exclusive OR Word)

Bit Operation Instructions

INSTRUCTION	OPERAND	FUNCTION
BAND	BF, src	BF←BF AND src
		(Bit And)
BCLR	dst	dst←0 (Bit Clear)
BCMP	BF, src	BF-src (Bit Compare)
BMOV	dst, src	dst←src (Bit Move)
BOR	dst, src	dst←BF OR src (Bit OR)
BSET	dst	dst←1 (Bit Set)
BTST	dst, src	dst AND src (Bit Test)
BXOR	BF, src	BF←BF XOR src
		(Bit Exclusive OR)

Rotate and Shift Instructions

INSTRUCTION	OPERAND	FUNCTION
RLC	dst	(Rotate Left through Carry)
RR	dst	(Rotate Right)
RRC	dst	(Rotate Right through Carry)
SLL	dst	(Shift Left Logical)
SRA	dst	(Shift Right Arithmetic)
SRL	dst	(Shift Right Logical)
SWAP	dst	(Swap Nibbles)

CPU Control Instructions

INSTRUCTION	OPERAND	FUNCTION
CLRC		C←0 (Clear Carry Flag)
СОМС		C←NOT C
		(Complement Carry Flag)
DI		I←0 (Disable Interrupt)
EI		I←1 (Enable Interrupt)
HALT		Move to HALT mode
		(Halt CPU)
NOP		No Opreration
		(No Opreration)
SETC		C←1 (Set Carry Flag)
STOP		Go to STOP mode
		(Stop CPU)

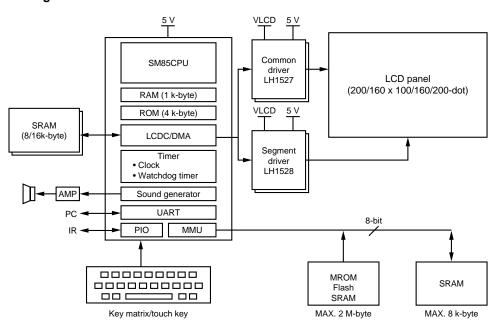
Addressing Mode

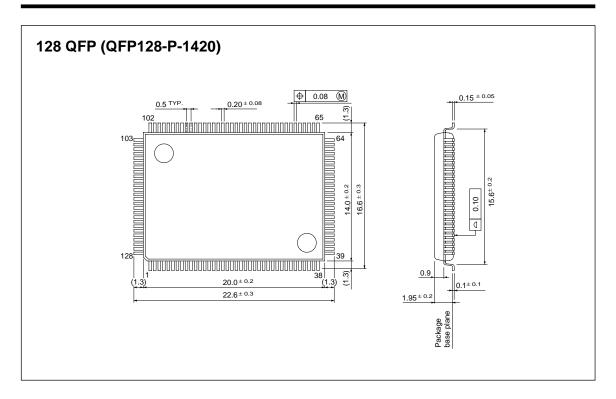
There are 23 types of addressing mode to perform memory accessing in SM85CPU. The relationships

between the addressing modes and the operand are shown in the following table 5.

Table 5 Addressing Mode Summary

NAME	SYMBOL	Range	Operand *1
lasa isa d			To specify the carry(C) and interrupt enable
Implied			(I) in the instruction code.
Register	r	r = R0-R7	General register [byte]
Register pair	rr	r = RR0, RR2,, RR14	General register [word]
Register file	R	R = 0 to 255 (R0-R15)	Register file (0000 _H -007F _H) and (0080 _H -00FF _H) [byte]
Register file pair	RR	R = 0, 2, 254 (RR0, RR2,, RR14)	Register file (0000 _H -007F _H) and (0080 _H -00FF _H) [byte]
Register indirect	@r	r = R0-R7	Memory (0000н-00FFн) [byte]
Register indirect auto increment	(r)+	r = R0-R7	Memory (0000н-00FFн) [byte]
Register indirect auto decrement	-(r)	r = R0-R7	Memory (0000н-00FFн) [byte]
Register index	n(r)*2	n = 00н-FFн, r = R1-R7	Memory (0000н-00FFн) [byte]
Register pair indirect	@rr	rr = RR0, RR2, , RR14	Memory (0000н-FFFFн) [word/byte]
Register pair indirect auto increment	(rr)+	rr = RR0, RR2, , RR14	Memory (0000н-FFFFн) [word/byte]
Register pair indirect auto decrement	–(rr)	rr = RR0, RR2, , RR14	Memory (0000н-FFFFн) [word/byte]
Register pair index	nn(rr)*³	nn = 0000н-FFFFн rr = RR2, RR4, , RR14	Memory (0000н-FFFFн) [word/byte]
Index indirect	@nn(r)*2	nn = 0000 _H -FFFF _H r = R1-R7	Memory (0000н-FFFFн) [word]
Immediate	IM	IM = 00н-FFн	The immediate data in the instruction code [byte]
Immediate long	IML	IML = 0000 _H -FFFF _H	The immediate data in the instruction code [word]
Bit	b	b = 0 to 7	Register file (0000H-007FH) and memory (0080H-00FFH, FF00H-FFFFH) [bit] (1 bit of 1 byte pointed by R, n(r) and DAp)
Port	р		Register file (0010 _H -0017 _H) [byte]
Relative	RA	PC - 128 to PC + 127	Program memory (1000н-FFFFн)
Direct	DA	DA = 0000 _H -FFFF _H	Memory (0000н-FFFFн) [byte]
Direct short	DAs	DAs = 1000 _H -1FFF _H	Program memory (1000 _H -1FFF _H)
Direct special page	DAp	DAp = FF00 _H -FFFF _H	Program memory (FF00н-FFFFн) [byte]
Direct indirect	@DA	DA = 0000 _H -FFFF _H	Memory (0000н-FFFFн)


^{*1} The data indicated by [] is the unit of possible to use in Load and Arithmetic Instructions.


^{*2} R0 can not be used.

^{*3} RR0 can not be used.

SYSTEM CONFIGURATION EXAMPLE

• Electronic organizer

